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Probability distribution of the free energy of a directed polymer in a random medium
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Laboratoire de Physique Statistiquegdie Normale Supeure, 24 rue Lhomond, 75231 Paris @& 05, France
(Received 10 December 1999

We calculate exactly the first cumulants of the free energy of a directed polymer in a random medium for the
geometry of a cylinder. By using the fact that thth moment(Z") of the partition function is given by the
ground-state energy of a quantum problemmafiteracting particles on a ring of length we write an integral
equation allowing to expand these moments in powers of the strength of the digasdér powers ofn. For
n small andn~ (L y) ~ 2, the moment$Z") take a scaling form which allows us to describe all the fluctuations
of order 1L of the free energy per unit length of the directed polymer. The distribution of these fluctuations is
the same as the one found recently in the asymmetric exclusion process, indicating that it is characteristic of all
the systems described by the Kardar-Parisi-Zhang equatior-ih dimensions.

PACS numbd(s): 64.60.Cn, 05.30-d, 05.70--a

[. INTRODUCTION rected polymer joining the points (0,0) and,i) on this
cylinder is given by the path integral
Directed polymers in a random medium is one of the sim-

plest systems for which the effect of strong disorder can be (x.1) t [1/dy(s)\?
studied[1-3]. At the mean-field level, it possesses a low- Z(x,t)= DY(S)GXF< —f dS[g( ds )
temperature phase, with a broken symmetry of redlital ©0) 0

similar to mean-field spin glassg8]. The problem is, how-

ever, much better understood than spin glasses; in particular, + 7(y(s),s) ) 1)

one can writg4,5] closed expressions of the mean-field free
energy and one can predict the existefi€eof phase transi- _ _ . .
tions in all dimensionsl+1>2+1. It is also an interesting Where the random medium is characterized by a Gaussian
system from the point of view of nonequilibrium phenom- White noisez(x,t),

ena: through the Kardar-Parisi-Zhafi§PZ) equation[8,9],

it is related to ballistic growth models and, int1l dimen- (n(x,t)n(X",t"))=yd(x=x")s(t—t"). 2
sions, to the asymmetric simple exclusion proc&sSEP
[3,9]. One of the main goals of the present work is to calculate the

In the theory of disordered systems, the replica approachumulants limp_..(In“Z(t))./t of the free energy per unit
plays a very special role. On the one hand, it is one of théength of the directed polymer. These cumulants are the co-
most powerful theoretical tools and often the only possibleefficients of the smalix expansion of(n,L,y) defined as
approach to study some strongly disordered systems. On the
other hand, it is difficult to tell in advance whether the pre- 1
dictions of the replica approach are correct or not. When it E(n,L,y)=—Ilim ?In
does not work, one can always try to break the symmetry of toee
the replica[6]: this usually makes the calculations much
more complicated without being certain that the results beThis E(n,L,y) was calculated exactly by KardatO] for
come correct. In the replica approach, the calculation usuallinteger n and L=c. His closed expressiorg(n,,y)
starts with an integer numberof the replica. Then, as the =—n(n?—1)y?24 cannot, however, be continued to all
limit of physical interest is the limih—0, one has to extend Vvalues ofn, in particular to negative, as it would violate the
to nonintegen results obtained for integer. This is in fact ~ fact thatd?E(n,L,y)/dn? is negative. Therefore, one does
the big difficulty of the replica approach, so it is useful to not know the range of validity of this expression.
look at simple examples for which thedependence can be  The second motivation of the present work is to test the
studied in detail. universality class of the KPZ equation. The probléof a

This is one of the motivations of the present work, wheredirected polymer in a random medium is described by the
we show how to calculate integer and noninteger moment§PZ equation as several other problems such as growing
(Z") of the partition functionZ of a directed polymer in 1 interfaces or exclusion procesd&. For certain models of
+1 dimensions. The geometry we consider is a cylinder inthis class, the asymmetric exclusion processes, the distribu-
finite in thet direction and periodic, of sizk, in thex direc-  tion of the total currenty, integrated over tim¢, has been
tion (i.e., x+L=x). The partition functionZ(x,t) of a di-  calculated exactlj11-1§ in the long-time limit. For large,

the generating function of this integrated curr¥pon a ring
of L sites takes the forml1,12

(Z"(x,1)

Zo0y) ®
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and it was showrf11-14], whenL is large and when the the smalln expansion, simplifies greatly in the scaling re-
parameterx in Eq. (4) is of orderL ~%? that A (@) takes gime (c large andh~c~*?), allowing us to calculate all the
the following scaling form: terms of the expansion and to establish EB).

Amaf @) — a1 =K;G(aKy), ) Il. A QUANTUM SYSTEM OF n PARTICLES

whereK,, K,, andK; are three constants which depend on WITH & INTERACTIONS

the system siz&, the density of particles, and the asymme- | et us start with a case slightly more general than &j.
try. where the noisen(x,t) in Eq. (1) is a Gaussian noise

~ The interesting aspect of E(p) is that the functiorG(B8)  s-correlated in time but with some given correlationin
is universal12,14,1§ in the sense that it does not depend onspace,

any of the microscopic parameters which define the model. It

is given(in a parametric formby (p(x,t) p(x",t"))=yv(x—x")5(t—t"). 9
Eoep If we consider the correlation functiofZ(xq,t) Z(x,,t)
B=- 21 T 6) ... Z(xy,t)) of the partition functionZ(x,t) at pointsx;,
P=LP X2, ... Xy, one can check3] from Egs.(1) and (9) that it
o satisfies
eP
G('B):_p=1pT/2' (7)

d
GHZ0aDZ06,0- - 20, 1)

In the correspondendg] between the directed polymer
problem and the asymmetric exclusion process through the = —ﬂ(Z(xl,t)Z(xz,t)- - Z(Xp,t)), (10
KPZ equation, the role played by(la(t)) is the ratioY,/L.
Comparing(exp(aY,)) and (Z"(t)) in Egs.(3) and(4), we  where the Hamiltoniark is given by
see thatn corresponds taxrL andE(n,L,y) to A(«@). If L )
the functionG(RB) is characteristic of systems described by ~ d n
the KPZ equation, we expect in the scaling regitieege L H==5 ; e 7Z'ﬁ v(Xe=Xp) = y50(0), (11)
and n~L ") a relation similar to Eq.(5 between ¢
E(n,L,y) [defined by Eq(3)] andn. This is indeed one of and where, because of the cylinder geometry in the directed
the main results of the present work: whiens large andn polymer problem, we have,=x,+L for 1<a=n.
~L" %2 we find This implies that in the long-time limit,

n? Ay (Z(X DZ(Xp, 1) - - Z(Xg 1))~ EOLD, (1)
E(n,L,Y)—E—WG(—n\/ZWLy). (8) _ -
™ whereE(n,L,y) is the ground-state energy of Ed.1).

It is clear that in order to establish this relation we have to. I one takes the I_|m_|tv.(x—x )—8(x=x’), the energy
calculate noninteger moments of the partition function. E(n,L,y) becomes infinite because of the constant part
The paper is organized as follows. In Sec. Il, we recallnv(0)/2 m_Eq.(ll). This d_|vergence disappears, however, if
how the replica approach of E¢l) can be formulated as a We _consider the ratio (Z(x;,t)Z(x;,t)---Z(xy,t))/
quantum problem witm particles on a ring and how this 1a{Z(X4 1)), and one can see that in the long-time limit,
problem can be solved by the Bethe ansatz when the noise is
S correlated as in Eqg(2). In Sec. lll, we write an integral (Z(x1,HZ(X0,1) - - - Z(%n 1))
equation(26) which, together with some symmetry condi- (Z(x1, ONZ(X2,1)) - - -(Z(Xn,1))
tions (27) and(28), allows us to solve the Bethe equations of ) )
Sec. II. The main advantage of E@6) is that the strength ~ Where E(n,L,») is the ground-state energy of the Hamil-
of the disordefwherec=yL/2) and the number of the rep- tonian
lica appear as continuous parameters. We show how expan- 1
sions in powers o€ or in powers of the number of replica H=—= 2
can be obtained from this integral equation. In the expansion 2%
of the energyE(n,L,vy) in powers ofc, all the coefficients
are polynomials im. This allows us to defin&(n,L,y) for ~ Where the positionx, of the n particles are on a ring of
a nonintegen at least perturbatively io. At the end of Sec. lengthL.
I, we show how to generate a Smaﬂ.expansion which Lieb and Liniger have shown that the Bethe ansatz allows
solves the integral equatiof26). We also give explicit ex- Us to calculate the ground-state enefgy, L, y) of this one-
pressions up to order® and we notice that in this smail-  dimensional quantum Hamiltonian exacfy8—24. The Be-
expansion of the energy, we have to deal with Coefﬁcientéhe ansatz consists in |00king for a ground-state wave func-

eftE(n,L,y)’ (13)

02

o2 Y2 X (19

that are functions of with a zero radius of convergence. The tion W(xy, ... X,) of Eq. (14) of the form

content of Secs. Il and Il is essentially a recall of a method

developed in our previous Worﬂ§L7]. In Sec. IV, we show W (xy, 1Xn):E ape?@pyt - Faem)L (1)
that the recursion of Sec. Ill, which generates all the terms of P
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in the region G=x;<...<x,<L. The sum in Eq(15) runs . SOLUTION OF THE BETHE ANSATZ
over all the permutationB of {1, ... n} and the value ofV USING AN INTEGRAL EQUATION

in other regions can be deduced from E#5) by symme-
tries. One can sho\W2-24,17 that Eq.(15) is the ground-
state wave function of Eq14) at energy

In this section we recall the approach developed in our
previous work[17], which consists in writing an integral
equation where andn appear as continuous parameters and
which allows us to expand the energy in powerg afs well

2
E(nLy)==13 > 93, (16)  as in powers of.
1=as=n Let us introduce the following function df,}:
if the q, are the solutions of tha coupled equations 1,
B(u)=—e®" %Y p(q e, (24
qa_QﬁJrC n Ao
=] 2 17
B#a Qa—0Qp—C where the parametejs(q,) are defined by

obtained by continuity from the solutidm,}={0} atc=0,

d,—0gtcC
where p(a.)= 11 +- (29
qﬁiqa qa qB

C:”_L' (18  If the {q,} are given by the solution of Eq17), which
2 corresponds to the ground state, one can stse® Appendix

. . A) that the functiorB(u) satisfies the integral equation
Moreover, theq, are all different and the ground state is ) () 9 q

symmetric {q,}={—0q,.}). [See, for instance[22]. Note u w2
that ik; and c in [22] are here (2/)q; and —; so ourc B(1+u)—B(1—u)=nch dp e e )
defined by Eq(18) and thec in [22] are different]
If we introduce the polynomiaP(X), XB(1-v)B(1+u—v) (26)
Px)=IT (X-q,), (19 and the following two conditions:
o B(1)=1, (27)
the system of equationd7) becomes
Y quation.7) B(u)=B(—u). (28)

e92P(q,—c)+e %P(q,+c)=0 (20)
Moreover, the energy16) can be extracted from the knowl-
for any 1<a<n, and we have from the symmetry of the edge ofB(u) through
ground state 3.2 )
EnLy)= 2| 12 ey (29

P(=X)=(=1)"P(X). (21)
The knowledge of the polynomid(X) determines the en- The derivation of Eqs(26)—(29) is given in Appendix A.
ergy (16) as We are now going to see how one can find perturbatively in
c or in n the solution of Eqs(26)—(28) and, consequently,

1 -
P(X)=X"— 5 the ground-state enerd®9).

1<sa=n

> qi)X“2+~-~ (22)

A. Expansion in powers ofc
[using EQ.(19) and the fact thaEq,=0].

For smallc, it is possible to solve directly E420) and to To obtain the smalé expansion oB(u) for arbitraryn,

determine they,, (see Appendix 2 This leads to the follow-  '© write
ing expression of the ground-state eneftt§): B(U) = By(U)+ CBy(U)+ C2By(U) + - - -. 30
2 c ¢ nc Conditi . B
=——nn—-1)| s+ =+ = 4 onditions (27) and (28) impose thatBy(0)=1 and all
E(n,L,y)=—zn(n=1)| 5+ 15+ 7557 0(C )). L) e o e that o (1) 2o ol aven More.

(23 over, as can be seen directly from Eg7), theq, scale like

) . . Jc whenc is small. (Appendix D shows how to obtain the
We see that the first coefficients of the snalixpansion are ¢4 expansion of they,.) This implies from the defini-

polynomial inn. In fact, following the approach of Appendix 4 (24) of B(u) that all theB,(u) are polynomials in.

D, one can see that each coefficient of the srmakpansion At zeroth order inc, Eq. (26) becomes
of E(n,L,v) is polynomial inn, allowing us to define, at '
least perturbatively irc, the ground-state enerdy(n,L,y) Bo(1+u)—Bg(1—u)=0. (31

for nonintegern. The approach of Appendix D becomes,

however, quickly complicated. This is why in the next sec-The only polynomial solution of Eq(31) consistent with
tion we develop a different approa€h7] based on the inte- Egs. (27) and (28), i.e., Bo(u)=Bg(—u) andBy(1)=1, is
gral equation(26). simply
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Bo(u)=1 (32

for any u. We put this back into Eq:26) and we get at first
order inc

B;(1+u)—B;(1—u)=nu. (33

Again, there is a unique polynomial solution which satisfies

the facts thaB,(u) is even and thaB,(1)=0:

n
Bl(u)zz(uz—l). (34)
It is easy to see from E@26) that at any order ik, we have
to solve

Bi(1+u) = By(1—u)=¢y(u), (39

where ¢, (u) is a polynomial odd inu. There is a unique
even polynomial B, (u) solution of Eq. (35 satisfying

Bi(1)=0: it is one degree higher thas#,(u) and can be
determined by equating each powernuoih both sides of Eq.
(35). (Alternatively, we found a way of writing the solution

for any ¢, (u):

By (u)= Sofludv Fi(0) +51[ i (U) =~ By (1) ]

+s[ (W)= P ()] +- -

e S (DR C OIS

/.

(36)

where thes, are the coefficients of the expansionxdsinhx
in powers ofx (i.e., asx/sinhx=1—x%/6+ 7x*360+ - - -, one
hassy=1, s;,=—1/6,s,=7/36Q ...).)

This procedure gives for the first terms

cn(u®=1) c®n(2n+1)(u?—1)>2
BU)=1s (4 ), on( 92( )
c%uuz—1)%5n%uz—1)+4n(2u1—1)
+ +2(5u76_03)) +0(c?).
(37
The energy can then be deduced from E9):
E(n,L,y)=—2n(n—;1) E+C—2+Lc3
L 2 12 180
+( n2--—n—-)c‘br.-.. (39
1512 1260
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definition of the smalk expansion oB(u) or of E(n,L,v)
to nonintegen. We can also collect in the smallexpansion
of B(u) all the terms proportional ta and call this series
b,(u). From Eq.(37) we see that

2_
_u 1)c+

2_ 2
by (u) 2 Wb

96
(u*—1)%(u’-3)
2880

c3+0(c?). (39
More generally, we can collect all the terms proportional to

nk in the smalle expansion and call the serigég(u). This
means that we can writB(u) as a power series in,

B(u)=1+nby(u)+nby(u)+ - - -, (40)
where all theb,(u) are defined perturbatively in. Condi-
tions (27) and (28) impose that all théo,(u) are even and
thatb,(1)=0 for all k=1. We defineby(u)=1 for consis-
tency.[lt is easy to see in the smail-expansion that iin
=0, thenB(u)=1.]

We are now going to describe the procedure we (&4
to determine the whole functidoy (u) and eventually all the
b (u). If we insert Eq.(40) into Eq.(26) we get, at first order
inn,

u
by(1+u)—by(1—u)= cf e i w2y, - (41)
0
It is easy to check that a solution of Eg.1) compatible with
the conditionsb,(1)=0 andb,(u)=b;(—u) is

\uvc \e

coshT — coshT

e

sinh——
2

—\22

e

bl(u)zx/Efo "

(42

There are, however, many other solutions of E4fl),
which can be obtained by adding to E@2) an arbitrary
functionF(u,c) even and periodic im of period 2 and van-
ishing atu=1. If we require that each term in the small-
expansion ofb,(u) is polynomial inu (as justified in Sec.
Il A), we see that all the terms of the smalkexpansion of
F(u,c) must be identically zero. This already shows that Eq.
(42) has the same smatl expansion(39) as one would get
by collecting all the terms proportional toin the smalle
expansion of Sec. Il A.

If the solution (42) of Eg. (41) had a nonzero radius of
convergence i, it would be natural to choose this solution

[For Eg. (38), we used more terms than given above ingng setF(u,c)=0. However, it is easy to see that E¢2)

B(u).] Of course, this expression agrees with E2{) ob-
tained directly by expanding the, .

B. Expansion in powers ofn

The number of particles is a priori an integer. However,
when we look at the smad-expansion(37) of B(u) or Eq.
(38) of the energy, we see that at any given ordec ithe

has a zero radius of convergencecirby making the change
of variablex?=2y, it is easy to see that E(42) is the Borel
sum of a divergent serid&5].

Apart from being the Borel sum of its expansion in pow-
ers ofc, we did not find definitive reasons why E@2) is
the solution of Eq(41) we should select. However, we can
notice that for integen, all theq,, are real and(u) defined

expression is polynomial in. Therefore, one can extend the by Eq. (24) is analytic inu and remains bounded &sn ul
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—o0, The solutionb,(u) given by Eq.(42) is also analytic in
u and grows as In{ as |Imu|—«. Adding any function
F(u,c) periodic and analytic i to Eq. (42) would produce
a much faster growth.

If we insert Eq.(40) into Eq. (26), we have to solve at

ordernk
br(1+u)—by(1—u)=gy(u), (43

where ¢, (u) is some function odd i which can be calcu-
lated if we know the previous ordels (u), .. . ,bx_1(u),

-1
u

(uy=c> f dv e~ S?-uw)i2p (1)
i=0 JO

ka,i,1(1+u—v). (44)

We see that the difficulty of selecting a solution of a differ-
ence equation appears at all orders in the expansion in pow-
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Indeed,b,(u) is an even function, vanishesat 1, and one
can check using Eq45) that Eq.(47) solves Eq.(43).

The integrals in Eqs(45)—(47) are convergenfl7] and
Egs. (44)—(47) give an automatic way of calculating the
by(u) up to any desired order.

This procedure is the direct generalization of the choice
(42) we did to solve Eq(41). In fact, fork=1, Egs.(44) and
(46) give (for A=0) a;(\)=cexp(—\%2) and Eq.(47) is
identical to Eq.(42).

As for Eqg. (42), the solution(47) is not the only solution
of Eq. (43). At any orderk, we could add an arbitrary even
periodic functionF (u,c) of period 2, the expansion of which
vanishes to all orders io. As for b;(u), we did not find an
unquestionable justification of our choice. One can notice,
nevertheless, that EA7) is the solution of Eq(43) analytic
in u and with the slowest growth withi in the imaginary
direction.

At ordern?, the procedurg44) and (46) gives

ers ofn, and we are now going to explain the procedure we

have used to select one solution.

If we write, as¢,(u) is an odd function ofy, > coshM—Z
Y 2
+= e a,(\)=ce M7 f dpe w2
aqw=2[ “dsnn S a0, s 2 o I e
0
tanh——
which is equivalent, by inverting wheu is imaginary the
Fourier transform in Eq45), to definea,(\) by
. —Aul2 _ 2
1 [+= AU iu ,2
aN\)==—[ dusin=— ¢ —]|, 46 f due # (48)
tanh—
then the solution fob,(u) we select is given by 2
Auvc Me
e COSH——-— COSh— with b,(u) given by Eq.(47). Writing downb(u) or az(u)
bk(U):J dn ad\). (47 would take here about half a column.
0 smh)\\/— We can now give the first terms in the smalkxpansion
2 of the energy. Using relatiof29), we find
|
L2 c c? 2c3/2f+oo A2 2, [+ A2 21
—E(n,L,y)=n|=+—|—n"— dN———=e~ —n—f d\————=e~
R PRET e B N alo N
tanh—— tanh——
2 2
A
2 cosh——2 B A_# 362
A ) 2 +oo ,. € 72— n
j due # ’2—+f due #72 +O(n4) (49
0 e A M\f
tanhT tanhT

By making the change of variab}?=2v, the terms of orden?

andn?® appear as Borel transforms of serieiwith a finite

radius of convergence. We conclude that these terms both have a zero radius of convergence in
This smalln expansion gives quickly very complicated expressiondgil). It turns out, as we shall see in the next
section, that for large, the expressions of thg (u) get simpler and the enerdy(n,L,y) can be calculated to all orders in

powers ofn.
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IV. EXPANSION IN POWERS OF n
IN THE REGIME c—®
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=

e AU u
zf dn Sinhia()\):n\/Ef do 97(027uv)/28
0 0

In the preceding section, we have developed a procedure

allowing to get the smalfh expansion of the energy by solv-
ing the problem(26)—(28). Here, we show how this proce-
dure becomes greatly simplified for large

The expansion in powers ofof the preceding section can
be summarized as follows: if we use H40) and we write

a(N)=nag(\)+na,(\)+---, (50)

theb,(u) anda,(\) can be obtained by expanding in powers

of n the following two equations:

auvc Ae
coshT — coshT

Bu=1+ [ dx
fo Ae

sinh——
2

a(\) (51)

[this is a rewriting of Eq(47)] and

ne (+= AU (iue . -
a(\)=— f dusin— dp e~ cw?—iuv/No)2
mJo 2 Jo

2i
iu
1+—-v .

Je

[This is a rewriting of Eqs(44) and (46).] It will be conve-
nient in the following to replace E@52) by its Fourier trans-
form,

xB(l—v)B( (52

+o0 \uyc
Zf d\ sinh \/—

. 5 a(\)

u
=ncf dv e~ S*~WI2B(1—y)B(1+u—v).
0
(53

[This is a rewriting of Eqs(44) and (45).]

We are going to see how one can simplify E(gl)—(53)
whenc is large. First we observe that for largendu fixed
of order 1, the expressidm (u) takes the scaling form

oo
e

One can check from Eq&44), (46), and(47) that this scaling
form is present at any order in the smallexpansion. In-
deed, Eq(51) becomes in the large-imit

+ oo
= ﬁf (e2—1)e2d\. (54
0

B

1+ i):1+f+xd>\(e”“’2—l)a(>\), (55
0

Ve

and using Eq(53) we find

XB

(56)

Ve

It is apparent from Eqg55) and(56) that in the larges limit
the functionB(1+u/+/c) depends only omi andn+/c, and
a(\) depends only on andny/c. Let us introduce the con-
stantK,

u—vo
)

+ 00
Kzl—f dx a(N). (57
0
Equation(55) becomes
u oo
Bl 1+ T =K+f dx eM2a(n). (58)
c 0

In Eq. (56), if we write the integral from O tai as the dif-
ference between an integral from 0 o~ and an integral
from u to +<0, and if we change the variable in the second
integral to shift it to O to+<«, we obtain

+o _ AU +o 2 v
Zf dx smh—a()\)zn\/Ef dve V7Bl 1- —
0 2 0 Jc
X euv/ZB 1+ U_U> _e—uvl2
Jc
XB| 1 ut (59
</l

If we replaceB[1+ (u—uv)/+/c] and B[1—(u+wv)/c] by
their expressiori58), we get after some rearrangements

+o . AU +o 2
Zf d\ smh?a()\)zn\/af dv e ’ZB<
0 0

=

. uv T
X 2KS|nh7+f dua(u)
0

v+
X e~ w2 sinh( u T'u

}. (60)
Taking the Fourier transform of this expression for imagi-
nary u, we get forh=0

a(7\)=n\/5f0mdv e‘vz/ZB( 1- i)

c

+ o

X K5()\—v)+J dua(u)e *R2s(N—v—pu)|.

0

(61)

This last expression can be used to calcuB(é +u/+/c)
using Eq.(58):
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u o , v For smalln, one can eliminate from Eqgs.(68) and(69).
Bl 1+ —=|=K+n cf dve v’?B 1——) We get
) el =
L2 nc2 o \/—
+ o0 —_— —_ 2
% Kevu/2+f du a(p)e 2w +musz| 5 E(n,L,y) S \/— 2nycm——(2nycm)
0
(62 (E_Ei:%Zn/——ﬁ
Finally, using Eq.58), we recognize the relation
u be , v +0((ne)h)|. (70
Bl 1+ — =K+n\/6f dve V7Bl 1- —
Ve 0 Je
V. CONCLUSION
u—u
X e'2B| 1+ s ) (63 In this paper, we have calculated, using the replica

method, the first cumulan{d.3) and (49) of the free energy
of a directed polymer in a random mediy#) for a cylinder
geometry. We used the integral equati@6) of [17] which
together with condition$27) and(28) allowed us to expand
the momentgZ") of the partition function in powers of the
strengthc of the disorder or in powers of the numbeof the
) replica. All the coefficients of the smatl-expansion(38) are

We see that, in the largetimit, Egs. (51) and(52) reduce
to this single equatiof63). We are now going to see that Eq.
(63) can be solved to all orders in the paramete/E. If we
introduce the functiorB(u) and the parameter defined by

B(u)= ;e—usz 1+ o (64)  Polynomial inn, allowing us to define the expansions for
2K\/; \/E nonintegem. On the other hand, the coefficients of the ex-
pansion(49) in powers ofn are complicated functions @,
and with in general a zero radius of convergencecatO. As
already mentioned ifl7], we think that weak disorder ex-
e=2nK\/mc, (65) pansions of the momen{Z") have generically a zero radius
of convergence for nonintegarwhen the disorder is Gauss-
ian; this is already the case for a single Ising spin in a Gauss-
1 . ian random field.
_ T —u¥a _ _ To obtain our smallk expansion, we solved a difference
Alw) © " EJ dv (u=v)p(~v). (66) equation(26) which at each order in powers ofhas several
solutions. We selected the particular solution which has the
Using Egs. (27), (29), and (64), we can express the slowest growth in the imaginanydirection and has the right
ground-state energ(n,L,y) in terms of B(u): smallc expansion, but we could not exclude other solutions.
A different approach, with a direct calculation of the first
cumulants of the free energy, and not based on the replica,
would therefore be very useful to test the validity of our
expressiong49), which we have been able to derive only
It is clear that relatiori66) alone determineg8(u), at least  perturbatively to all orders ig.
perturbatively ine. So, from Eq.(67), we only need to ex- Although our expansion in powers afbecomes quickly
tract 3(0) andB”(0) from Eq.(66). very complicated, it simplifies wheais large and we could
It is easy to do it for the first orders indirectly from Eq.  write in this limiting case all the terms of the smallexpan-
(66). Moreover, we have found a way of calculatifO) sion (68) and (69). The expressioii8) we obtain of the en-
and B"(0), andhence the energy, to all orders & This  ergy E(n,L,v) [that is, through Eq(3), the expression of
calculation is technical and we present it in Appendix B. The(Z")] is given exactly by the same scaling function as found
final result can be written as for the ASEP. The present work therefore gives additional
evidence that the scaling functidd(B) given by Eqs.(6)

then Eq.(63) simply becomes

E(LY= (7 (67)

n3CZ nC2 B//(O)
6 + 12 nc B(O) .

e and(7) is characteristic of the long-time behavior of the KPZ
nVe=— 2\/— = k3/2' (68) equation in 31 dimensions on a ring and that the probabil-
ity distribution of the free energy for a very long directed
+oo polymer on a ring should have a universal shape in the range
E(nL,y)= 2 nc? PO (69  Where the fluctuations per unit length of the free energy are
4\/— k=1 k5/2 of order 1L. Other universal distributions for the free energy

of a directed polymer have been found recently for different

We see that the energy is defined in an implicit way:geometrie§26—30. Our present approach, based on the Be-
expressior(68) allows us to calculate as a function oh/c, the ansatz, is, at the moment, unable to recover these other

and Eq.(69) gives the energy as a function ef If we sub-  distributions. One can try, however, to extend it to open

stitute ¢ using Eq.(18), we obtain the result announced in boundary conditiongin this case too, the Bethe ansatz can

Eq. (8). be used24]) instead of periodic boundary conditions and
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see how this change of boundary conditions affects the dison the other hand, using Eq4.6) and(Al) and the symme-
tribution of InZ. Of course, it would be very nice to find a try {q,}={—q,}, we have

simpler approach which would somehow unify all these re-

sults and allow us to relate all these universal distributions
corresponding to the possible geometries, in the spirit of
critical phenomena in two dimensions where conformal in-
variance[31] allows us to connect the properties of different SO that
geometries.

L2
P(X)=X"+ ZE(n,L,y)xHJr OX"™ %, (Ad)

Technically, the approach followed in the present work is P(X+c) ne 02(2) 03(2) —cE(n,L,y)L?%2
simply to try to find theq, solution of Eq.(17) and to cal- BRSSP T ,
culate the energy16), which is a symmetric function of the P(X) X X2 X3
rootsq,, in such a way thah becomes a continuous vari- 1
able. One could do the same in all kinds of situations. For +0| <=4|. (A5)
example, in Appendix C, we show how to define and calcu- X

late symmetric functions of the roots of Hermite polynomials

when the degree of the polynomial becomes noninteger.
Another interesting extension of the present work would

be to consider more general correlations of the n@seThe 2 p(dq)=n, (AB)

corresponding quantum problem becomes then the general Ao

problem of quantum particles interacting with an arbitrary n

pair potential. If the interactions are short ranged, one ex- > qap(qa)=c(2), (A7)

pects the universality class of the KPZ equation to hold, so Ya

one could try to repeat our expansion in powersdbr a

general potentialwithout the use of the Bethe anspsimply 2 a2p(9,) = Cz(

by a standard perturbation theory in the strength of the po- C

tential. We believe that at any order in the strength of the . )

potential, the ground-state energy is polynomiahiallow- ~ Moreover, by letting<= % qz—c in Eq. (A2), we get for any

ing us to define the perturbation expansion for noninteger 9 100t of P(X)

as we did here. If, with such an approach based on perturba- 1 p(d.) p(d.)

tion theory, one could recover the scaling funct®mf Egs. —=2 < = <.

(6) and (7), one could try to extend the approach to higher C “q, Gz, 0g*tC “q Q,TqgtcC

dimension as the relation between the directed polymer prolt

lem and the quantum Hamiltonian is valid in any dimension

Comparing Eqs(A3) and (A5), we get the relations

2
n)_ E(n,L,y)L . A8)

3 2

(A9)
astly, using the symmetrig,}={-q,} and the definition
'(25), the Bethe ansatz equatio(ik’) reduce to
ACKNOWLEDGMENTS edep(—q,)—e 9ep(q,)=0. (A10)

We thank Frapeis David, Michel Gaudin, Vincent Pas-  From the definition(24) of B(u) and the propertieéA6)—
quier, Herbert Spohn, and Andiéoros for interesting dis- (A10), it is straightforward to establish Eq&6)—(29): the

cussions. integral equation26) is a direct consequence of Eq24)
and(A9). Propertieg27) and(28) follow from Eqs.(24) and
APPENDIX A: DERIVATION OF EQS. (26)—(29) (A6) and Eqgs(24) and(A10), respectively. Lastly, E¢(29)

i ) . is a consequence of EqR4) and (A6)—(A8).
Let us first establish some useful properties of the num-

bersp(q,) defined by Eq(25). If the g, are then roots of  AppENDIX B: THE ENERGY IN THE SCALING REGIME
the polynomialP(X),
In this appendix, we show how to calculate the energy

from the integral equatio(66). This equation is of the form
P)=11 (x-a.). (A1)

N - | B =HW+e [ dv pu-v)p-v). @D
it is easy to see that the(q,) defined in Eq.(25) satisfy 0

where, in our caseii(u) is given by

P(X+c) p(d,)
———FX—=1+c . A2
P(X) % X—0q (A2) 1 2
H(u)= —=e Y (B2)
(The two sides have the same poles with the same residues 2\m

and coincide aX—.) Expanding the right-hand side of Eq. \ye are going to do our calculations for an arbitrary function
(A2) for large X, we get H(u), even inu and decreasing fast enougo make all the
integrals convergewhen|u|— .
i) To find the energy, we see from E@7) that we have to
' calculate from Eq(B1) the quantities3(0) and 8”(0) as
(A3)  functions ofe. We first show that Eq(B1) is equivalent to

P(X+cC) p(d.)
B _1+ch& 5
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+o Equations(B1) and (B3) are thus equivalent and Egs.
B(u)=H(u)+ Gfo dv H(u—v)B(v), (B3)  (B4) and(B5) give the solution of Eq(B1) to any order ine.
as long adH(u) is even and decreases fast enough. Then, we 2. Calculation of the derivatives of 8(u)

will introduce a new function3* (u) which is easy to calcu-

Y If we look at the expressio(B5) of B(u) in powers ofe,
late, and relate the derivatives gfu) and 8* (u) atu=0.

the calculation of3(0) andB”(0) looks simple, especially
whenH(u) is given by Eq.(B2). However, when we try to

1. Equivalence between Eqgs(B1) and (B3) actually do the calculation, the expressions become quickly
The solution of Eq(B3) can be written as complicated with error functions, primitives of error func-

tions, etc. It would be much easier if the integrals in EBp)

B(U)=Bo(U)+ eB1(U)+ €Bo(U)+ - - -, (B4)  were running from—< to + instead of 0 to+oe. This is
why we introduce the even function
where ,

*(W)=B5(u)+eBT(U)+eB5(u)+-- -, B9

Bo(W) =H(U), B*(u)=pBy(u)+epi(u)+e°B3(u) (B9)

where, fork>0,

Bl(u):f OOH(U_U:l_)H(Ul) dUl, 1 o
0 ,3:(u)=mf "'J:ocH(U_Ul)"'H(Uk)dvl"'dUk

(B10)

(BS)

+ o
Bz(u):J‘fo H(U_Ul)H(Ul_Uz)H(Uz) dUldl)z,
and B3 (u)=H(u). One can see easily that

-1 [+ ) A
+oo B*(U)=2— dge'"In[1-€eH(q)], (B1)
Bk<u)=f-~JO H(u—v)H(w1—vy)- - “EJ*“
where we have defined
- -H(vk-1—vH(vy) doyg - - - doy.

~ +:)O .
For a givenk>0, the integration range oB,(u) can be H(Q)=Jiwdu €94H(u). (B12

divided intok parts: the region wherg, has the lowest value

of all the {v;}, the region where, has the lowest value,  The Wiener-Hopf techniqugs?2] allows us to relatgg(u)

..., and theregion wherev, has the lowest value. Let us andg* (u). More specifically, we are going to show that for
consider, for somg such that ¥j<k, the region where); any X>0,

has the lowest value. All the other integrals then run figm
to +o. If we translate those to integrals running from 0 to +oo X
+ by changingy; into v;+v;, we get GL due " g*(u)=In

1+ efmdu e‘“X,B(u)).
0

(B13)

+ 00 + o
f dUJf dUl"°dl}j_1H(U_Ul_Uj) ) . ) .
0 0 This relation allows us to relate the derivativesgtiu) and

e B*(u) atu=0: indeed, ifX is large in Eq.(B13), we get
S R BO) B'(0) B(0)
too ’ "
—uX — e

jo due ""B(u) < + N + NG +

XH(=vj4)H@j 11— vj52) - -H(vtv)).
(B6)

Using the fact thaH (u)=H(—u), we see that Eq(B6) is and a similar expression fg@* (u). Comparing both sides of
Eq. (B13) gives

(B14)

equal to
+o B(0)=B*(0),
fo dvj Bj_1(u—vj) Bk—j(—v)). (B7)
€

’ — 2
By summing ovelj, we therefore have B0)= 2’3(0) ' (B19

+o0 k 62

Br(u)= fo dv ;1 Bj-1(U=v)By-j(—v). (BY B"(0)=p*"(0)+ gﬁ(0)3-

Finally, if we multiply by €€ and if we sum ovek all these [We have used the fact that ' (0)=0 becausg* (u) is an
terms(keeping apart the term fde=0), we obtain Eq(B1). even function}
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In order to prove Eq(B13), the first thing to note is that, same properties for Ig<0. This allows us to calculate the

asH(u) decreases fast whan— =, then also doe@(u). left-hand side of Eq(B13) as we did for the right-hand side.
This allows us to define the two “partial” Fourier transforms \We find

3+(q>=Jo du €9B(u), (B16) fmdu & Xg* ()= SIn[1+ €3, (iX)].  (B23)
0 €
B (q)= fo du €%8(u). (B17) Comparing Eqs(B20) and (B23) completes the proof of
o g. (B13).

We can now give an expression of the energy. If we use
It is easy to see thah(q) is analytic in the upper half-plane the definition(B2) of H(u) in Egs.(B11) and(B12), we find

(Img=0). Moreover, in this half-plane3. (q) is bounded

+ o0 k

and vanishes whefg|— . Conve_rsv_ely,[%,(q) is analytic, B (u)= D € U4k )] (B24)
bounded, and decreases to 0 at infinity Wherqlﬂo. 2w k=0 (k+1)%2
The functionB(u) can be written in terms o8, (q) and
B_(q): This gives
1 (+= iqur 2 - 1 3 €
u)=—J dge” +8_ , (B18 *(0)= , B25
pluy=5—| dae B (a)+A-(a)] B*(0) 2 P (ke ) (B25)
which allows us to express the right-hand side of BL3) Lt ‘
whenx is positive *10O)) — €
' 0)=-— , B26
. A0 a\m go (k+1)52 (829
e g e 2 [P @
0 ue A= 27) —w qX+iq and, together with Eq(B15), these equations allow us to
. give an expression g8(0) andB”(0).
_ From Egs.(27), (64), and(65), we see that
NS qﬁ(g)_ 619 ds.(27), (64), and (65)
2 X+iq
€B(0)=ny/c. (B27)
We calculate the two integrals in the right-hand side of Eq. _
(B19) by the residue theorem. A8, (q) is analytic and de- 1hen. using Eq(B1S), we get
creases at infinity in the upper half-plane, the first integral .
can be written as a contour integral around the upper half- € (0)=n\/E, (B28)
plane. The only contribution to the first integral comes, using
Cauchy’s theorem, from the potg=iX. One can also check B"(0) € ., n’c
that the second integral vanishesing a contour around the B0) =mﬂ 0+ 45
lower half-plane and the fact that_(q) has no pol¢ There-
fore, Eq.(B19) gives The energy is given by Eq67). We get
+ oo
—uX —n (i CZ
JO due "B(u)= B, (iX). (B20) E(n,L,7)=F 5_6\/5[3*,,(0)} (B29)

Now, if we multiply Eq.(B3) by exp{qu) and if we inte-
grate overu, we easily get for any rea
B(@)+B-()=H(a)+eH(@B.(q).  (B2D
This relation betweerH(q), B_(q), and B, (q), together
with Eq. (B11), gives

+ o0

1
Bru=5—1| dqe UfIn[1+€B.(a)]

2me

~In[1-€B_(q)]}. (822

Using again that, in the upper half-plang, (u) is analytic
and vanishes at infinity we see that, fosmall enoughe,

And, finally, using relation$B25) and(B26), we obtain Egs.
(68) and (69).

APPENDIX C: HERMITE POLYNOMIALS
WITH A NONINTEGER NUMBER OF ROOTS

What we try to do in this whole paper is essentially to
calculateX ,q° (the energywhere{q,} is a solution of Eq.
(17), in such a way that appears as a continuous parameter.
This allows us to obtain expressions of the energy for non-
integern.

One can use the same procedure in other kinds of situa-
tions. A simple example which illustrates our calculations is
the case of the zeros of Hermite polynomials.

The nth Hermite polynomiaH ,(X) is the solution poly-

the quantity If1-+ef. (q)] is also analytic and decreases to 0 nomial in X with leading coefficient 1 of the differential

at infinity when Imq=0. Similarly, If1—eB_(q)] has the

equation[33]
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1
EHQ(X)—XH;(X)%—an(X):O. (C1)

PROBABILITY DISTRIBUTION OF THE FREE ENERGY . ..

The polynomialH,(x) is of degreen and has the symmetry To obtain an expansion in powers mfwe write

H,(X)=(—)"H,(—X). For example, we havel ,(X)=X*
—3X%+32. Then roots {h,} (1<a<=n) of H(X) are real
and distinct34].

By deriving Eq.(C1) p times with respect tX, we see
that, for allp,

1
XHP D)= ZHP 20 +(n-p)HP(X). (€2

6799
1 1
E\I”(X)+EW(X)2—X\I’(X)+n=O. (C9)
(X)=nW(X)+n2W,(X)+---. (C10
ThusV,(X) satisfies
%‘lfi(X)—X‘lfl(X)Jrl:O. (C11)

This differential equation can easily be solved, and the inte-
gration constant can be fixed using the requirenf€s} that,

This shows that then(— p)th Hermite polynomial is, up to a for large X, ¥(X)=n/X,

constant factor, equal to thgth derivative ofH, (X). (This
property will be used a lot in Appendix D.

Equation(C1) can be used directly to calculate the first

coefficients ofH(X),

1/n 3/n
Hn(X)=X”——( )X”‘2+ —(4

n_4 ...
52 2 )x +.... (C3

Using Eg. (C3), the symmetry ofH(X), and the largeX
expansion,

HiX) o 1 ]
Fn(X) ‘%W(g h“)' ©4

we can calculate the moments of the rofits} of H(X):

2_n(n—l)
2=

a

(CH

n(n—1)

4_
2N

(2n—3), (C6)

and so on. These moments aeriori defined only for in-
tegern but as the expressions are polynomiahinone can
obviously extend their definition to nonintegefsimilarly to
what we do in the smalt-expansion oB(u) in Sec.(lll B)].

To generate all the moments of the robts, it is conve-
nient to consider the generating function

Q<u>=h2 ghat, (o3

which is quite reminiscent of the quantifg(u) defined in
our quantum problem[Using Egs.(24) and (64), we can

check thatg(u)xexpU/c/2)=p(q,)exp@,u/\/c).]
The functionQ(u) is hard to calculate for generalbut

we can expand it in powers @f This can be done by con-

sidering

HA(X)

P (X)= A.00

=f+wdu Q(u)e Y%, (C8
0

which is defined only forX positive and large enough to

make the integral converge. This functidf(X) is solution
of a differential equation which follows from E4C1):

+ oo
W, (X)= J du e U~ (u4), (C12
0
Then ordem? of Eq. (C9) gives
1, 1 )
quz(x)_xqu(xH' E‘I’l(x) =0, (C13
the solution of which can be written as
cos —
e N \/E 2
\Pz(X):zf du e uX-u ’4f dt——e 1.
0 0 t
(C14)

The procedure can be iterated to any ordenifof course
expressions become more and more compligatdsing Eq.
(C8) and the expressions df ;(X) andW¥,(X), we can give
an expression oQ(u):

cos -1

away o 2auza [
Q(u)=ne +2n‘e dt
0

siSiE

xe +0(n%). (C15
Expanding this expression in powers of one calculates
from this expression and from E({C7) the terms linear and
quadratic inn of all the moments of thdn,. [The results
agree for the second and the fourth moments with EQS)
and(C6).]

We noticed that for smalh, the expressiofC15 corre-
sponds ton roots h,, distributed along the imaginary axis
with a Gaussian distribution. We do not know whether this is
general and whether there exists, for general noninteger
distribution of the root, in the complex plane which gives
all moments calculated as in EqE5) and (C6).

It is interesting to notice the similarity betwe€{u) and
B(u) defined in Sec. IV.

APPENDIX D: THE EXPANSION IN POWERS
OF ¢ USING HERMITE POLYNOMIALS

In this appendix we show how to expand the solution
{q.} of Eqg. (17) in powers ofc for integern. One can see
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from Eq.(17) that the rootsy, scale for smalt like Je. ltis 1 )
thus convenient to rescale the polynomi(X) defined in ERl_XRl+nR1_f2H

Eqg. (19) and theq, in the following way: NS 5

X 1
= H -H"+Z 3)_ — (4)
Ja=Ta\C, g H = H+ GHO- 21O, (07)

D1
D As R; andH are polynomials, Eq.D7) tells us thatf,H is a

polynomial, too. We also know thdt(X) has no pole, thus
it must be a polynomialR;(X) is of degree strictly less than
n, so the expressioR;/2—XR,;+nR, is of degree strictly
less tham. As H is of degreen, we recognize in EqD7) a
- o B Euclidian division of polynomials:- f,(X) is the quotient of
€'« °R(r,— Vo) +e "« *R(r,+1c)=0.  (D2)  the right-hand side of EqD7) divided by H(X), and the
terms involvingR,(X) form the remainder of this division.
As the rootsr, of R(X) are all distinct, this equation is Thijs ensures that there is only one possible funcfisX)

P(X+/c)=Cc"2R(X).

[{r.} are thus the roots dR(X).] With these new variables,
Eq. (20) becomes

obviously equivalent to which verifies Eq(D7).
~ ~ In practice, to perform this Euclidian division we can use
e CR(X — \Jc) +e X TR(X + ) the property(C2) of the Hermite polynomials as many times
as needed in the right-hand side of EQ7): for instance, we
=2[coshXyc+f(X)IR(X), (D3)  transform the ternX®H’/6 into nX2H/6+ X2H"/12. We can-

not changeX?H anymore, but we can apply E¢C2) to the
where f(X) is analytic [this follows from the fact that as termX?H”. When no more transformation is possible, we are
R(X) is polynomial,f(X) defined by Eq(D3) is obviously |eft with
meromorphic; moreover, as the left-hand side of HR)

vanishes at all the roots &(X), f(X) has no polé We are X3 X @) @
now going to solve EqD3) as a power series iali.e., find FH - ZH + EH - ZLH
both f(X) andR(X) as power series ia].
n_, nn- 1) 1
. . =|=zX= H—-—H". (D8)
1. Expansion of the polynomialR(X) 6 6 12

We only have the single equatioi®3) to obtain two
quantities[ R(X) and f(X)]; however, using the fact that
f(X) has no pole an®R(X) is a polynomial, both quantities

The Euclidian division is then easy to perform,

X . . ; n n(n—1)
can be determined in a smallexpansion. Let us write fo(X)=— 5x2+ 5
R(X)=Rg(X)+CRy(X)+Cc?Ry(X) + - - -, (D9)
(D4) LRI XR4NR= — —H".
f(X)=cf(X)+c?Fo(X)+ -, 2 12

where thef;(X) have no poleRy(X) is a polynomial of Using again_Eq(CZ), the differential equation oR; can be
degreen [the term of highest degree Ry(X) is X"], and all  Solved; we find
the R;(X) (for i=1) are polynomials of degree less than

. . . . 1
At first order inc, we find that Eq(D3) gives T
Ri(X) == 5;H"(X). (D10)
1
ERg—XR(’): f1Ry. (D5)  As Ry(X) is simply a derivative oH(X), and asf;(X) is a

known polynomial ofX, we see that at the next orderdnwe

. . will have to solve an equation of the form
As f1(X) has no pole, it must be a polynomial. Because

Ro(X) is of degreen, we see by looking at both sides of Eq. 1 _

(D5) that, necessarilyf,(X)=—n. We recognize then the ER%—XR2+nR2—f3H:2 XIH®), (D11)
differential equation(C1) that defines Hermite polynomials.

Therefore,

Using many times EqC2), the right-hand side can be writ-
ten in a “canonical form™:
f1(X)=—n,
(D6) iy k) j (k)
Ro(X)=H(X). D XH®W=3 XIH+ X H®, (D12)

We recover that way that the, are the zeros of thath  which allows us to writef 3 as a polynomial il andR, as a
Hermite polynomial whert is very small[24]. sum of derivatives oH(X). It is easy to see recursively that
At next order inc, Eq. (D3) gives at any ordec in the expansion we can repeat this procedure
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to calculatef (X) andRy_1(X). As a result we see théy is 1
a polynomial inX and thatR,_; can be written as a sum of XeH'(ho) = 5,H"(h,) =0. (D19
derivatives ofH(X).

It is worth noting that at each order the variableomes  Using the definition(C1) of Hermite polynomials, we have
from the previous orders and from transformations of theH”(h,)=2h_,H’(h,). This gives in turrx,=%h,. Repeat-
kind XH'(X)—3H"(X)+nH(X). Because those are the ing this procedure to any order @we generate terms of the
only two mechanisms by which appears, it is easy to see form h! H®(h,) which can be reduced to terms of the form
that at each order the coefficients of the sum of derivatives OIfl'aH ’(h,) by using Eq.(C2) as many times as necessary. It

H(X) that constitute®,_,(X) are allpolynomials in n is then possible to divide the expressionty(h,) and we
A computer can easily do this ted|oys but straightforwardye |eft with an equation giving each new term in the expan-
task to any desired order. Up &3, we find sion of r, as apolynomial in h,. Again, this can be pro-
grammed, and we get, up to the oraér
R=H-— iH"—CZ LH"— LH(4)
24 360 5760 . c J(n 11 1,
none 31 ra‘ﬁ‘h“ 2" (120~ 1440)ha_ ﬁ)ha}
+c8 - H"+ H®— H©
2520 302 60480 967 68 +o(cd), (D16)
+0(c?). (D13

Using Egs.(D1) and(16), this leads to

2. Expansion of the rootsr, of R(X)

2
SENLyY=—cS -5 3
As seen in Eq(D13), the polynomialR(X) is to leading
order inc given byH(X). It is thus natural to write the roots c3
r, of R(X) as ~360

ro=h,+cx,+0(c?). (D14) (D17)

(6n—3)>, h2—2> h*|+0(ch,

({h,} are the roots oH.) Inserting Eq(D14) into Eq.(D13),  which coincides with Eq(38) when one uses the properties
we find, at first order irc, (C5) and(C6) of the rootsh, of the Hermite polynomials.
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