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Probability distribution of the free energy of a directed polymer in a random medium

Éric Brunet* and Bernard Derrida†

Laboratoire de Physique Statistique, E´cole Normale Supe´rieure, 24 rue Lhomond, 75231 Paris Ce´dex 05, France
~Received 10 December 1999!

We calculate exactly the first cumulants of the free energy of a directed polymer in a random medium for the
geometry of a cylinder. By using the fact that thenth moment̂ Zn& of the partition function is given by the
ground-state energy of a quantum problem ofn interacting particles on a ring of lengthL, we write an integral
equation allowing to expand these moments in powers of the strength of the disorderg or in powers ofn. For
n small andn;(Lg)21/2, the momentŝZn& take a scaling form which allows us to describe all the fluctuations
of order 1/L of the free energy per unit length of the directed polymer. The distribution of these fluctuations is
the same as the one found recently in the asymmetric exclusion process, indicating that it is characteristic of all
the systems described by the Kardar-Parisi-Zhang equation in 111 dimensions.

PACS number~s!: 64.60.Cn, 05.30.2d, 05.70.2a
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I. INTRODUCTION

Directed polymers in a random medium is one of the s
plest systems for which the effect of strong disorder can
studied@1–3#. At the mean-field level, it possesses a lo
temperature phase, with a broken symmetry of replica@4,5#
similar to mean-field spin glasses@6#. The problem is, how-
ever, much better understood than spin glasses; in partic
one can write@4,5# closed expressions of the mean-field fr
energy and one can predict the existence@7# of phase transi-
tions in all dimensionsd11.211. It is also an interesting
system from the point of view of nonequilibrium phenom
ena: through the Kardar-Parisi-Zhang~KPZ! equation@8,9#,
it is related to ballistic growth models and, in 111 dimen-
sions, to the asymmetric simple exclusion process~ASEP!
@3,9#.

In the theory of disordered systems, the replica appro
plays a very special role. On the one hand, it is one of
most powerful theoretical tools and often the only possi
approach to study some strongly disordered systems. On
other hand, it is difficult to tell in advance whether the pr
dictions of the replica approach are correct or not. Whe
does not work, one can always try to break the symmetry
the replica @6#: this usually makes the calculations mu
more complicated without being certain that the results
come correct. In the replica approach, the calculation usu
starts with an integer numbern of the replica. Then, as th
limit of physical interest is the limitn→0, one has to extend
to nonintegern results obtained for integern. This is in fact
the big difficulty of the replica approach, so it is useful
look at simple examples for which then dependence can b
studied in detail.

This is one of the motivations of the present work, whe
we show how to calculate integer and noninteger mome
^Zn& of the partition functionZ of a directed polymer in 1
11 dimensions. The geometry we consider is a cylinder
finite in thet direction and periodic, of sizeL, in thex direc-
tion ~i.e., x1L[x). The partition functionZ(x,t) of a di-
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rected polymer joining the points (0,0) and (x,t) on this
cylinder is given by the path integral

Z~x,t !5E
(0,0)

(x,t)

Dy~s!expS 2E
0

t

dsF1

2 S dy~s!

ds D 2

1h„y~s!,s…G D , ~1!

where the random medium is characterized by a Gaus
white noiseh(x,t),

^h~x,t !h~x8,t8!&5gd~x2x8!d~ t2t8!. ~2!

One of the main goals of the present work is to calculate
cumulants limt→`^ lnkZ(t)&c /t of the free energy per uni
length of the directed polymer. These cumulants are the
efficients of the small-n expansion ofE(n,L,g) defined as

E~n,L,g!52 lim
t→`

1

t
lnF ^Zn~x,t !&

^Z~x,t !&nG . ~3!

This E(n,L,g) was calculated exactly by Kardar@10# for
integer n and L5`. His closed expressionE(n,`,g)
52n(n221)g2/24 cannot, however, be continued to a
values ofn, in particular to negativen, as it would violate the
fact that ]2E(n,L,g)/]n2 is negative. Therefore, one doe
not know the range of validity of this expression.

The second motivation of the present work is to test
universality class of the KPZ equation. The problem~1! of a
directed polymer in a random medium is described by
KPZ equation as several other problems such as grow
interfaces or exclusion processes@3#. For certain models of
this class, the asymmetric exclusion processes, the distr
tion of the total currentYt integrated over timet, has been
calculated exactly@11–15# in the long-time limit. For larget,
the generating function of this integrated currentYt on a ring
of L sites takes the form@11,12#

ln^eaYt&;Lmax~a!t, ~4!
6789 ©2000 The American Physical Society
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6790 PRE 61ÉRIC BRUNET AND BERNARD DERRIDA
and it was shown@11–14#, when L is large and when the
parametera in Eq. ~4! is of orderL23/2 that Lmax(a) takes
the following scaling form:

Lmax~a!2aK15K2G~aK3!, ~5!

whereK1 , K2, andK3 are three constants which depend
the system sizeL, the density of particles, and the asymm
try.

The interesting aspect of Eq.~5! is that the functionG(b)
is universal@12,14,16# in the sense that it does not depend
any of the microscopic parameters which define the mode
is given ~in a parametric form! by

b52 (
p51

1`
ep

p3/2
, ~6!

G~b!52 (
p51

1`
ep

p5/2
. ~7!

In the correspondence@3# between the directed polyme
problem and the asymmetric exclusion process through
KPZ equation, the role played by ln„Z(t)… is the ratioYt /L.
Comparing^exp(aYt)& and ^Zn(t)& in Eqs. ~3! and ~4!, we
see thatn corresponds toaL and E(n,L,g) to Lmax(a). If
the functionG(b) is characteristic of systems described
the KPZ equation, we expect in the scaling regime~largeL
and n;L21/2) a relation similar to Eq. ~5! between
E(n,L,g) @defined by Eq.~3!# andn. This is indeed one of
the main results of the present work: whenL is large andn
;L21/2, we find

E~n,L,g!5
ng2

24
2

Ag

2A2pL3/2
G~2nA2pLg!. ~8!

It is clear that in order to establish this relation we have
calculate noninteger moments of the partition function.

The paper is organized as follows. In Sec. II, we rec
how the replica approach of Eq.~1! can be formulated as
quantum problem withn particles on a ring and how thi
problem can be solved by the Bethe ansatz when the noi
d correlated as in Eq.~2!. In Sec. III, we write an integra
equation~26! which, together with some symmetry cond
tions ~27! and~28!, allows us to solve the Bethe equations
Sec. II. The main advantage of Eq.~26! is that the strengthc
of the disorder~wherec5gL/2) and the number of the rep
lica appear as continuous parameters. We show how ex
sions in powers ofc or in powers of the numbern of replica
can be obtained from this integral equation. In the expans
of the energyE(n,L,g) in powers ofc, all the coefficients
are polynomials inn. This allows us to defineE(n,L,g) for
a nonintegern at least perturbatively inc. At the end of Sec.
III, we show how to generate a small-n expansion which
solves the integral equation~26!. We also give explicit ex-
pressions up to ordern3 and we notice that in this small-n
expansion of the energy, we have to deal with coefficie
that are functions ofc with a zero radius of convergence. Th
content of Secs. II and III is essentially a recall of a meth
developed in our previous work@17#. In Sec. IV, we show
that the recursion of Sec. III, which generates all the term
-
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the small-n expansion, simplifies greatly in the scaling r
gime (c large andn;c21/2), allowing us to calculate all the
terms of the expansion and to establish Eq.~8!.

II. A QUANTUM SYSTEM OF n PARTICLES
WITH d INTERACTIONS

Let us start with a case slightly more general than Eq.~2!
where the noiseh(x,t) in Eq. ~1! is a Gaussian noise
d-correlated in time but with some given correlationv in
space,

^h~x,t !h~x8,t8!&5gv~x2x8!d~ t2t8!. ~9!

If we consider the correlation function̂Z(x1 ,t) Z(x2 ,t)
••• Z(xn ,t)& of the partition functionZ(x,t) at pointsx1 ,
x2 , . . . ,xn , one can check@3# from Eqs.~1! and ~9! that it
satisfies

d

dt
^Z~x1 ,t !Z~x2 ,t !•••Z~xn ,t !&

52H̃^Z~x1 ,t !Z~x2 ,t !•••Z~xn ,t !&, ~10!

where the HamiltonianH̃ is given by

H̃52
1

2 (
a

]2

]xa
2 2 g (

a,b
v~xa2xb!2g

n

2
v~0!, ~11!

and where, because of the cylinder geometry in the direc
polymer problem, we havexa[xa1L for 1<a<n.

This implies that in the long-time limit,

^Z~x1 ,t !Z~x2 ,t !•••Z~xn ,t !&;e2tẼ(n,L,g), ~12!

whereẼ(n,L,g) is the ground-state energy of Eq.~11!.
If one takes the limitv(x2x8)→d(x2x8), the energy

Ẽ(n,L,g) becomes infinite because of the constant p
nv(0)/2 in Eq.~11!. This divergence disappears, however,
we consider the ratio ^Z(x1 ,t)Z(x2 ,t)•••Z(xn ,t)&/
)a^Z(xa ,t)&, and one can see that in the long-time limit,

^Z~x1 ,t !Z~x2 ,t !•••Z~xn ,t !&

^Z~x1 ,t !&^Z~x2 ,t !&•••^Z~xn ,t !&
;e2tE(n,L,g), ~13!

where E(n,L,g) is the ground-state energy of the Ham
tonian

H52
1

2 (
a

]2

]xa
2 2 g (

a,b
d~xa2xb!, ~14!

where the positionsxa of the n particles are on a ring o
lengthL.

Lieb and Liniger have shown that the Bethe ansatz allo
us to calculate the ground-state energyE(n,L,g) of this one-
dimensional quantum Hamiltonian exactly@18–24#. The Be-
the ansatz consists in looking for a ground-state wave fu
tion C(x1 , . . . ,xn) of Eq. ~14! of the form

C~x1 , . . . ,xn!5(
P

aPe2(q1xP(1)1 • • • 1qnxP(n))/L ~15!
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in the region 0<x1< . . . <xn<L. The sum in Eq.~15! runs
over all the permutationsP of $1, . . . ,n% and the value ofC
in other regions can be deduced from Eq.~15! by symme-
tries. One can show@22–24,17# that Eq.~15! is the ground-
state wave function of Eq.~14! at energy

E~n,L,g!52
2

L2 (
1<a<n

qa
2 , ~16!

if the qa are the solutions of then coupled equations

e2qa5 )
bÞa

qa2qb1c

qa2qb2c
, ~17!

obtained by continuity from the solution$qa%5$0% at c50,
where

c5
gL

2
. ~18!

Moreover, theqa are all different and the ground state
symmetric ($qa%5$2qa%). @See, for instance,@22#. Note
that ik j and c in @22# are here (2/L)qj and 2g; so our c
defined by Eq.~18! and thec in @22# are different.#

If we introduce the polynomialP(X),

P~X!5)
qa

~X2qa!, ~19!

the system of equations~17! becomes

eqaP~qa2c!1e2qaP~qa1c!50 ~20!

for any 1<a<n, and we have from the symmetry of th
ground state

P~2X!5~21!nP~X!. ~21!

The knowledge of the polynomialP(X) determines the en
ergy ~16! as

P~X!5Xn2
1

2 S (
1<a<n

qa
2 DXn221••• ~22!

@using Eq.~19! and the fact that(qa50].
For smallc, it is possible to solve directly Eq.~20! and to

determine theqa ~see Appendix D!. This leads to the follow-
ing expression of the ground-state energy~16!:

E~n,L,g!52
2

L2 n~n21!S c

2
1

c2

12
1

nc3

180
1O~c4! D .

~23!

We see that the first coefficients of the small-c expansion are
polynomial inn. In fact, following the approach of Appendi
D, one can see that each coefficient of the small-c expansion
of E(n,L,g) is polynomial in n, allowing us to define, a
least perturbatively inc, the ground-state energyE(n,L,g)
for nonintegern. The approach of Appendix D become
however, quickly complicated. This is why in the next se
tion we develop a different approach@17# based on the inte
gral equation~26!.
-

III. SOLUTION OF THE BETHE ANSATZ
USING AN INTEGRAL EQUATION

In this section we recall the approach developed in
previous work@17#, which consists in writing an integra
equation wherec andn appear as continuous parameters a
which allows us to expand the energy in powers ofc as well
as in powers ofn.

Let us introduce the following function of$qa%:

B~u!5
1

n
ec(u221)/4(

qa

r~qa!eqa(u21), ~24!

where the parametersr(qa) are defined by

r~qa!5 )
qbÞqa

qa2qb1c

qa2qb
. ~25!

If the $qa% are given by the solution of Eq.~17!, which
corresponds to the ground state, one can show~see Appendix
A! that the functionB(u) satisfies the integral equation

B~11u!2B~12u!5ncE
0

u

dv e2c(v22uv)/2

3B~12v !B~11u2v ! ~26!

and the following two conditions:

B~1!51, ~27!

B~u!5B~2u!. ~28!

Moreover, the energy~16! can be extracted from the know
edge ofB(u) through

E~n,L,g!5
2

L2 Fn3c2

6
1

nc2

12
1

nc

2
2nB9~1!G . ~29!

The derivation of Eqs.~26!–~29! is given in Appendix A.
We are now going to see how one can find perturbatively
c or in n the solution of Eqs.~26!–~28! and, consequently
the ground-state energy~29!.

A. Expansion in powers ofc

To obtain the small-c expansion ofB(u) for arbitraryn,
we write

B~u!5B0~u!1cB1~u!1c2B2~u!1•••. ~30!

Conditions ~27! and ~28! impose thatB0(0)51 and all
Bk(1)50 for k.0, and that theBk(u) are all even. More-
over, as can be seen directly from Eq.~17!, theqa scale like
Ac when c is small. ~Appendix D shows how to obtain th
small-c expansion of theqa .) This implies from the defini-
tion ~24! of B(u) that all theBk(u) are polynomials inu.

At zeroth order inc, Eq. ~26! becomes

B0~11u!2B0~12u!50. ~31!

The only polynomial solution of Eq.~31! consistent with
Eqs. ~27! and ~28!, i.e., B0(u)5B0(2u) and B0(1)51, is
simply
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B0~u!51 ~32!

for any u. We put this back into Eq.~26! and we get at first
order inc

B1~11u!2B1~12u!5nu. ~33!

Again, there is a unique polynomial solution which satisfi
the facts thatB1(u) is even and thatB1(1)50:

B1~u!5
n

4
~u221!. ~34!

It is easy to see from Eq.~26! that at any order inc, we have
to solve

Bk~11u!2Bk~12u!5fk~u!, ~35!

where fk(u) is a polynomial odd inu. There is a unique
even polynomial Bk(u) solution of Eq. ~35! satisfying
Bk(1)50: it is one degree higher thanfk(u) and can be
determined by equating each power ofu in both sides of Eq.
~35!. „Alternatively, we found a way of writing the solutio
for any fk(u):

Bk~u!5Fs0E
1

u

dv fk~v !1s1@fk8~u!2fk8~1!#

1s2@fk-~u!2fk-~1!#1•••

1sp@fk
(2p21)~u!2fk

(2p21)~1!#1•••G Y 2,

~36!

where thesk are the coefficients of the expansion ofx/sinhx
in powers ofx ~i.e., asx/sinhx512x2/617x4/3601•••, one
hass051, s1521/6, s257/360, . . . ).…

This procedure gives for the first terms

B~u!511
cn~u221!

4
1

c2n~2n11!~u221!2

96

1

c3n~u221!2
„5n2~u221!14n~2u221!

12~u223!…

5760
1O~c4!.

~37!

The energy can then be deduced from Eq.~29!:

E~n,L,g!522
n~n21!

L2 F c

2
1

c2

12
1

n

180
c3

1S n2

1512
2

n

1260D c41•••G . ~38!

@For Eq. ~38!, we used more terms than given above
B(u).# Of course, this expression agrees with Eq.~23! ob-
tained directly by expanding theqa .

B. Expansion in powers ofn

The number of particlesn is a priori an integer. However
when we look at the small-c expansion~37! of B(u) or Eq.
~38! of the energy, we see that at any given order inc the
expression is polynomial inn. Therefore, one can extend th
s

definition of the small-c expansion ofB(u) or of E(n,L,g)
to nonintegern. We can also collect in the small-c expansion
of B(u) all the terms proportional ton and call this series
b1(u). From Eq.~37! we see that

b1~u!5
~u221!

4
c1

~u221!2

96
c2

1
~u221!2~u223!

2880
c31O~c4!. ~39!

More generally, we can collect all the terms proportional
nk in the small-c expansion and call the seriesbk(u). This
means that we can writeB(u) as a power series inn,

B~u!511nb1~u!1n2b2~u!1•••, ~40!

where all thebk(u) are defined perturbatively inc. Condi-
tions ~27! and ~28! impose that all thebk(u) are even and
that bk(1)50 for all k>1. We defineb0(u)51 for consis-
tency. @It is easy to see in the small-c expansion that ifn
50, thenB(u)51.#

We are now going to describe the procedure we used@17#
to determine the whole functionb1(u) and eventually all the
bk(u). If we insert Eq.~40! into Eq.~26! we get, at first order
in n,

b1~11u!2b1~12u!5cE
0

u

e2c(v22uv)/2 dv. ~41!

It is easy to check that a solution of Eq.~41! compatible with
the conditionsb1(1)50 andb1(u)5b1(2u) is

b1~u!5AcE
0

1`

dl

cosh
luAc

2
2cosh

lAc

2

sinh
lAc

2

e2 l2/2.

~42!

There are, however, many other solutions of Eq.~41!,
which can be obtained by adding to Eq.~42! an arbitrary
functionF(u,c) even and periodic inu of period 2 and van-
ishing atu51. If we require that each term in the small-c
expansion ofb1(u) is polynomial inu ~as justified in Sec.
III A !, we see that all the terms of the small-c expansion of
F(u,c) must be identically zero. This already shows that E
~42! has the same smallc expansion~39! as one would get
by collecting all the terms proportional ton in the small-c
expansion of Sec. III A.

If the solution ~42! of Eq. ~41! had a nonzero radius o
convergence inc, it would be natural to choose this solutio
and setF(u,c)50. However, it is easy to see that Eq.~42!
has a zero radius of convergence inc: by making the change
of variablel252n, it is easy to see that Eq.~42! is the Borel
sum of a divergent series@25#.

Apart from being the Borel sum of its expansion in pow
ers of c, we did not find definitive reasons why Eq.~42! is
the solution of Eq.~41! we should select. However, we ca
notice that for integern, all theqa are real andB(u) defined
by Eq. ~24! is analytic inu and remains bounded asuIm uu
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→`. The solutionb1(u) given by Eq.~42! is also analytic in
u and grows as ln(u) as uIm uu→`. Adding any function
F(u,c) periodic and analytic inu to Eq.~42! would produce
a much faster growth.

If we insert Eq.~40! into Eq. ~26!, we have to solve a
ordernk

bk~11u!2bk~12u!5wk~u!, ~43!

wherewk(u) is some function odd inu which can be calcu-
lated if we know the previous ordersb1(u), . . . ,bk21(u),

wk~u!5c(
i 50

k21 E
0

u

dv e2 c(v22uv)/2bi~12v !

3bk2 i 21~11u2v !. ~44!

We see that the difficulty of selecting a solution of a diffe
ence equation appears at all orders in the expansion in p
ers ofn, and we are now going to explain the procedure
have used to select one solution.

If we write, aswk(u) is an odd function ofu,

wk~u!52E
0

1`

dl sinh
luAc

2
ak~l!, ~45!

which is equivalent, by inverting whenu is imaginary the
Fourier transform in Eq.~45!, to defineak(l) by

ak~l!5
1

2ipE0

1`

du sin
lu

2
wkS iu

Ac
D , ~46!

then the solution forbk(u) we select is given by

bk~u!5E
0

1`

dl

cosh
luAc

2
2 cosh

lAc

2

sinh
lAc

2

ak~l!. ~47!
w-
e

Indeed,bk(u) is an even function, vanishes atu51, and one
can check using Eq.~45! that Eq.~47! solves Eq.~43!.

The integrals in Eqs.~45!–~47! are convergent@17# and
Eqs. ~44!–~47! give an automatic way of calculating th
bk(u) up to any desired order.

This procedure is the direct generalization of the cho
~42! we did to solve Eq.~41!. In fact, fork51, Eqs.~44! and
~46! give ~for l>0) a1(l)5Ac exp(2l2/2) and Eq.~47! is
identical to Eq.~42!.

As for Eq. ~42!, the solution~47! is not the only solution
of Eq. ~43!. At any orderk, we could add an arbitrary eve
periodic functionF(u,c) of period 2, the expansion of which
vanishes to all orders inc. As for b1(u), we did not find an
unquestionable justification of our choice. One can noti
nevertheless, that Eq.~47! is the solution of Eq.~43! analytic
in u and with the slowest growth withu in the imaginary
direction.

At order n2, the procedure~44! and ~46! gives

a2~l!5ce2l2/2F E0

l

dm e2m2/2

2 cosh
lm

2
22

tanh
mAc

2

1E
l

1`

dm e2m2/2
e2 lm/222

tanh
mAc

2

G , ~48!

with b2(u) given by Eq.~47!. Writing downb3(u) or a3(u)
would take here about half a column.

We can now give the first terms in the small-n expansion
of the energy. Using relation~29!, we find
xt
n

L2

2
E~n,L,g!5nS c

2
1

c2

12
D 2n2

c3/2

4
E

0

1`

dl
l2

tanh
lAc

2

e2l2/22 n3
c2

4
E

0

1`

dl
l2

tanh
lAc

2

e2l2/2

3S E
0

l

dm e2m2/2

2 cosh
lm

2
22

tanh
mAc

2

1E
l

1`

dm e2m2/2
e2

lm

2 22

tanh
mAc

2

D 1
n3c2

6
1O~n4!. ~49!

By making the change of variablel252n, the terms of ordern2 andn3 appear as Borel transforms of series inc with a finite
radius of convergence. We conclude that these terms both have a zero radius of convergence inc.

This small-n expansion gives quickly very complicated expressions ofbk(u). It turns out, as we shall see in the ne
section, that for largec, the expressions of thebk(u) get simpler and the energyE(n,L,g) can be calculated to all orders i
powers ofn.
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IV. EXPANSION IN POWERS OF n
IN THE REGIME c\`

In the preceding section, we have developed a proced
allowing to get the small-n expansion of the energy by solv
ing the problem~26!–~28!. Here, we show how this proce
dure becomes greatly simplified for largec.

The expansion in powers ofn of the preceding section ca
be summarized as follows: if we use Eq.~40! and we write

a~l!5na1~l!1n2a2~l!1•••, ~50!

thebk(u) andak(l) can be obtained by expanding in powe
of n the following two equations:

B~u!511E
0

1`

dl

cosh
luAc

2
2 cosh

lAc

2

sinh
lAc

2

a~l! ~51!

@this is a rewriting of Eq.~47!# and

a~l!5
nc

2ip
E

0

1`

du sin
lu

2
E

0

iu/Ac
dv e2c(v22 iuv/Ac)/2

3B~12v !BS 11
iu

Ac
2v D . ~52!

@This is a rewriting of Eqs.~44! and ~46!.# It will be conve-
nient in the following to replace Eq.~52! by its Fourier trans-
form,

2E
0

1`

dl sinh
luAc

2
a~l!

5ncE
0

u

dv e2c(v22uv)/2B~12v !B~11u2v !.

~53!

@This is a rewriting of Eqs.~44! and ~45!.#
We are going to see how one can simplify Eqs.~51!–~53!

whenc is large. First we observe that for largec andu fixed
of order 1, the expressionb1(u) takes the scaling form

b1S 11
u

Ac
D .AcE

0

1`

~elu/221!e2l2/2 dl. ~54!

One can check from Eqs.~44!, ~46!, and~47! that this scaling
form is present at any order in the small-n expansion. In-
deed, Eq.~51! becomes in the large-c limit

BS 11
u

Ac
D 511E

0

1`

dl ~elu/221!a~l!, ~55!

and using Eq.~53! we find
re

2E
0

1`

dl sinh
lu

2
a~l!5nAcE

0

u

dv e2~v22uv !/2BS 12
v

Ac
D

3BS 11
u2v

Ac
D . ~56!

It is apparent from Eqs.~55! and~56! that in the large-c limit
the functionB(11u/Ac) depends only onu and nAc, and
a(l) depends only onl andnAc. Let us introduce the con
stantK,

K512E
0

1`

dl a~l!. ~57!

Equation~55! becomes

BS 11
u

Ac
D 5K1E

0

1`

dl elu/2a~l!. ~58!

In Eq. ~56!, if we write the integral from 0 tou as the dif-
ference between an integral from 0 to1` and an integral
from u to 1`, and if we change the variable in the seco
integral to shift it to 0 to1`, we obtain

2E
0

1`

dl sinh
lu

2
a~l!5nAcE

0

1`

dv e2v2/2BS 12
v

Ac
D

3Feuv/2BS 11
u2v

Ac
D 2e2uv/2

3BS 12
u1v

Ac
D G . ~59!

If we replaceB@11(u2v)/Ac# and B@12(u1v)/Ac# by
their expression~58!, we get after some rearrangements

2E
0

1`

dl sinh
lu

2
a~l!5nAcE

0

1`

dv e2v2/2BS 12
v

Ac
D

3F2Ksinh
uv
2

1E
0

1`

dm a~m!

3e2 mv/22 sinhS u
v1m

2 D G . ~60!

Taking the Fourier transform of this expression for ima
nary u, we get forl>0

a~l!5nAcE
0

1`

dv e2v2/2BS 12
v

Ac
D

3FKd~l2v !1E
0

1`

dm a~m!e2 mv/2d~l2v2m!G .
~61!

This last expression can be used to calculateB(11u/Ac)
using Eq.~58!:
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BS 11
u

Ac
D 5K1nAcE

0

1`

dv e2v2/2BS 12
v

Ac
D

3FKevu/21E
0

1`

dm a~m!e2mv/2e(v1m)u/2G .
~62!

Finally, using Eq.~58!, we recognize the relation

BS 11
u

Ac
D 5K1nAcE

0

1`

dv e2v2/2BS 12
v

Ac
D

3evu/2BS 11
u2v

Ac
D . ~63!

We see that, in the large-c limit, Eqs.~51! and~52! reduce
to this single equation~63!. We are now going to see that E
~63! can be solved to all orders in the parameternAc. If we
introduce the functionb(u) and the parametere defined by

b~u!5
1

2KAp
e2u2/4BS 11

u

Ac
D ~64!

and

e52nKApc, ~65!

then Eq.~63! simply becomes

b~u!5
1

2Ap
e2 u2/41eE

0

1`

dv b~u2v !b~2v !. ~66!

Using Eqs. ~27!, ~29!, and ~64!, we can express the
ground-state energyE(n,L,g) in terms ofb(u):

E~n,L,g!5
2

L2 Fn3c2

6
1

nc2

12
2nc

b9~0!

b~0! G . ~67!

It is clear that relation~66! alone determinesb(u), at least
perturbatively ine. So, from Eq.~67!, we only need to ex-
tract b(0) andb9(0) from Eq.~66!.

It is easy to do it for the first orders ine directly from Eq.
~66!. Moreover, we have found a way of calculatingb(0)
and b9(0), andhence the energy, to all orders ine. This
calculation is technical and we present it in Appendix B. T
final result can be written as

nAc5
1

2Ap
(
k51

1`
ek

k3/2
, ~68!

E~n,L,g!5
2

L2 Fnc2

12
1

Ac

4Ap
(
k51

1`
ek

k5/2G . ~69!

We see that the energy is defined in an implicit wa
expression~68! allows us to calculatee as a function ofnAc,
and Eq.~69! gives the energy as a function ofe. If we sub-
stitute c using Eq.~18!, we obtain the result announced
Eq. ~8!.
e

:

For smalln, one can eliminatee from Eqs.~68! and~69!.
We get

L2

2
E~n,L,g!2

nc2

12
5

Ac

4Ap
F2nAcp2

A2

8
~2nAcp!2

1S 1

8
2

2A3

27 D ~2nAcp!3

1O„~nAc!4
…G . ~70!

V. CONCLUSION

In this paper, we have calculated, using the repl
method, the first cumulants~13! and ~49! of the free energy
of a directed polymer in a random medium~1! for a cylinder
geometry. We used the integral equation~26! of @17# which
together with conditions~27! and~28! allowed us to expand
the momentŝZn& of the partition function in powers of the
strengthc of the disorder or in powers of the numbern of the
replica. All the coefficients of the small-c expansion~38! are
polynomial in n, allowing us to define the expansions fo
nonintegern. On the other hand, the coefficients of the e
pansion~49! in powers ofn are complicated functions ofc,
with in general a zero radius of convergence atc50. As
already mentioned in@17#, we think that weak disorder ex
pansions of the moments^Zn& have generically a zero radiu
of convergence for nonintegern when the disorder is Gauss
ian; this is already the case for a single Ising spin in a Gau
ian random field.

To obtain our small-n expansion, we solved a differenc
equation~26! which at each order in powers ofn has several
solutions. We selected the particular solution which has
slowest growth in the imaginaryu direction and has the righ
small-c expansion, but we could not exclude other solutio
A different approach, with a direct calculation of the fir
cumulants of the free energy, and not based on the rep
would therefore be very useful to test the validity of o
expressions~49!, which we have been able to derive on
perturbatively to all orders inc.

Although our expansion in powers ofn becomes quickly
very complicated, it simplifies whenc is large and we could
write in this limiting case all the terms of the small-n expan-
sion ~68! and ~69!. The expression~8! we obtain of the en-
ergy E(n,L,g) @that is, through Eq.~3!, the expression of
^Zn&] is given exactly by the same scaling function as fou
for the ASEP. The present work therefore gives additio
evidence that the scaling functionG(b) given by Eqs.~6!
and~7! is characteristic of the long-time behavior of the KP
equation in 111 dimensions on a ring and that the probab
ity distribution of the free energy for a very long directe
polymer on a ring should have a universal shape in the ra
where the fluctuations per unit length of the free energy
of order 1/L. Other universal distributions for the free energ
of a directed polymer have been found recently for differe
geometries@26–30#. Our present approach, based on the B
the ansatz, is, at the moment, unable to recover these o
distributions. One can try, however, to extend it to op
boundary conditions~in this case too, the Bethe ansatz c
be used@24#! instead of periodic boundary conditions an
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see how this change of boundary conditions affects the
tribution of lnZ. Of course, it would be very nice to find
simpler approach which would somehow unify all these
sults and allow us to relate all these universal distributio
corresponding to the possible geometries, in the spirit
critical phenomena in two dimensions where conformal
variance@31# allows us to connect the properties of differe
geometries.

Technically, the approach followed in the present work
simply to try to find theqa solution of Eq.~17! and to cal-
culate the energy~16!, which is a symmetric function of the
roots qa , in such a way thatn becomes a continuous var
able. One could do the same in all kinds of situations.
example, in Appendix C, we show how to define and cal
late symmetric functions of the roots of Hermite polynomia
when the degree of the polynomial becomes noninteger.

Another interesting extension of the present work wo
be to consider more general correlations of the noise~9!. The
corresponding quantum problem becomes then the gen
problem of quantum particles interacting with an arbitra
pair potential. If the interactions are short ranged, one
pects the universality class of the KPZ equation to hold,
one could try to repeat our expansion in powers ofc for a
general potential~without the use of the Bethe ansatz! simply
by a standard perturbation theory in the strength of the
tential. We believe that at any order in the strength of
potential, the ground-state energy is polynomial inn allow-
ing us to define the perturbation expansion for nonintegen
as we did here. If, with such an approach based on pertu
tion theory, one could recover the scaling functionG of Eqs.
~6! and ~7!, one could try to extend the approach to high
dimension as the relation between the directed polymer p
lem and the quantum Hamiltonian is valid in any dimensio
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APPENDIX A: DERIVATION OF EQS. „26…–„29…

Let us first establish some useful properties of the nu
bersr(qa) defined by Eq.~25!. If the qa are then roots of
the polynomialP(X),

P~X!5)
qa

~X2qa!, ~A1!

it is easy to see that ther(qa) defined in Eq.~25! satisfy

P~X1c!

P~X!
511c(

qa

r~qa!

X2qa
. ~A2!

~The two sides have the same poles with the same resi
and coincide atX→`.! Expanding the right-hand side of Eq
~A2! for largeX, we get

P~X1c!

P~X!
511c(

qa

r~qa!

X S 11
qa

X
1

qa
2

X2D 1OS 1

X4D .

~A3!
s-

-
s
f
-

s

r
-

ral

-
o

-
e

a-

r
b-
.

-

es

On the other hand, using Eqs.~16! and~A1! and the symme-
try $qa%5$2qa%, we have

P~X!5Xn1
L2

4
E~n,L,g!Xn221O~Xn24!, ~A4!

so that

P~X1c!

P~X!
511

nc

X
1

c2S n
2D

X2 1

c3S n
3D2cE~n,L,g!L2/2

X3

1OS 1

X4D . ~A5!

Comparing Eqs.~A3! and ~A5!, we get the relations

(
qa

r~qa!5n, ~A6!

(
qa

qar~qa!5cS n
2D , ~A7!

(
qa

qa
2r~qa!5c2S n

3D2
E~n,L,g!L2

2
. ~A8!

Moreover, by lettingX56qb2c in Eq. ~A2!, we get for any
qb root of P(X)

1

c
5(

qa

r~qa!

qa2qb1c
5(

qa

r~qa!

qa1qb1c
. ~A9!

Lastly, using the symmetry$qa%5$2qa% and the definition
~25!, the Bethe ansatz equations~17! reduce to

eqar~2qa!2e2qar~qa!50. ~A10!

From the definition~24! of B(u) and the properties~A6!–
~A10!, it is straightforward to establish Eqs.~26!–~29!: the
integral equation~26! is a direct consequence of Eqs.~24!
and~A9!. Properties~27! and~28! follow from Eqs.~24! and
~A6! and Eqs.~24! and~A10!, respectively. Lastly, Eq.~29!
is a consequence of Eqs.~24! and ~A6!–~A8!.

APPENDIX B: THE ENERGY IN THE SCALING REGIME

In this appendix, we show how to calculate the ener
from the integral equation~66!. This equation is of the form

b~u!5H~u!1eE
0

1`

dv b~u2v !b~2v !, ~B1!

where, in our case,H(u) is given by

H~u!5
1

2Ap
e2u2/4. ~B2!

We are going to do our calculations for an arbitrary functi
H(u), even inu and decreasing fast enough~to make all the
integrals converge! when uuu→`.

To find the energy, we see from Eq.~67! that we have to
calculate from Eq.~B1! the quantitiesb(0) and b9(0) as
functions ofe. We first show that Eq.~B1! is equivalent to
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b~u!5H~u!1eE
0

1`

dv H~u2v !b~v !, ~B3!

as long asH(u) is even and decreases fast enough. Then,
will introduce a new functionb* (u) which is easy to calcu-
late, and relate the derivatives ofb(u) andb* (u) at u50.

1. Equivalence between Eqs.„B1… and „B3…

The solution of Eq.~B3! can be written as

b~u!5b0~u!1eb1~u!1e2b2~u!1•••, ~B4!

where

b0~u!5H~u!,

b1~u!5E
0

1`

H~u2v1!H~v1! dv1 ,

~B5!

b2~u!5EE
0

1`

H~u2v1!H~v12v2!H~v2! dv1dv2 ,

•••

bk~u!5E •••E
0

1`

H~u2v1!H~v12v2!•••

•••H~vk212vk!H~vk! dv1•••dvk .

For a givenk.0, the integration range ofbk(u) can be
divided intok parts: the region wherev1 has the lowest value
of all the $v i%, the region wherev2 has the lowest value
. . . , and theregion wherevk has the lowest value. Let u
consider, for somej such that 1< j <k, the region wherev j
has the lowest value. All the other integrals then run fromv j
to 1`. If we translate those to integrals running from 0
1` by changingv i into v i1v j , we get

E
0

1`

dv j E
0

1`

dv1•••dv j 21 H~u2v12v j !

3H~v12v2!•••H~v j 21!E
0

1`

dv j 11•••dvk

3H~2v j 11!H~v j 112v j 12!•••H~vk1v j !.

~B6!

Using the fact thatH(u)5H(2u), we see that Eq.~B6! is
equal to

E
0

1`

dv j b j 21~u2v j !bk2 j~2v j !. ~B7!

By summing overj, we therefore have

bk~u!5E
0

1`

dv (
j 51

k

b j 21~u2v !bk2 j~2v !. ~B8!

Finally, if we multiply by ek and if we sum overk all these
terms~keeping apart the term fork50), we obtain Eq.~B1!.
e

Equations~B1! and ~B3! are thus equivalent and Eqs
~B4! and~B5! give the solution of Eq.~B1! to any order ine.

2. Calculation of the derivatives ofb„u…

If we look at the expression~B5! of b(u) in powers ofe,
the calculation ofb(0) andb9(0) looks simple, especially
whenH(u) is given by Eq.~B2!. However, when we try to
actually do the calculation, the expressions become quic
complicated with error functions, primitives of error func
tions, etc. It would be much easier if the integrals in Eq.~B5!
were running from2` to 1` instead of 0 to1`. This is
why we introduce the even function

b* ~u!5b0* ~u!1eb1* ~u!1e2b2* ~u!1•••, ~B9!

where, fork.0,

bk* ~u!5
1

k11E •••E
2`

1`

H~u2v1!•••H~vk! dv1•••dvk

~B10!

andb0* (u)5H(u). One can see easily that

b* ~u!5
21

2peE2`

1`

dq e2 iquln@12eĤ~q!#, ~B11!

where we have defined

Ĥ~q!5E
2`

1`

du eiquH~u!. ~B12!

The Wiener-Hopf technique@32# allows us to relateb(u)
andb* (u). More specifically, we are going to show that fo
any X.0,

eE
0

1`

du e2uXb* ~u!5 lnS 11eE
0

1`

du e2uXb~u! D .

~B13!

This relation allows us to relate the derivatives ofb(u) and
b* (u) at u50: indeed, ifX is large in Eq.~B13!, we get

E
0

1`

du e2uXb~u!5
b~0!

X
1

b8~0!

X2
1

b9~0!

X3
1•••

~B14!

and a similar expression forb* (u). Comparing both sides o
Eq. ~B13! gives

b~0!5b* ~0!,

b8~0!5
e

2
b~0!2, ~B15!

b9~0!5b* 9~0!1
e2

6
b~0!3.

@We have used the fact thatb* 8(0)50 becauseb* (u) is an
even function.#
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In order to prove Eq.~B13!, the first thing to note is that
asH(u) decreases fast whenu→6`, then also doesb(u).
This allows us to define the two ‘‘partial’’ Fourier transform

b̂1~q!5E
0

1`

du eiqub~u!, ~B16!

b̂2~q!5E
2`

0

du eiqub~u!. ~B17!

It is easy to see thatb̂1(q) is analytic in the upper half-plan
(Im q>0). Moreover, in this half-plane,b̂1(q) is bounded
and vanishes whenuqu→`. Conversely,b̂2(q) is analytic,
bounded, and decreases to 0 at infinity when Imq<0.

The functionb(u) can be written in terms ofb̂1(q) and
b̂2(q):

b~u!5
1

2pE2`

1`

dq e2 iqu@b̂1~q!1b̂2~q!#, ~B18!

which allows us to express the right-hand side of Eq.~B13!
whenx is positive,

E
0

1`

du e2uXb~u!5
1

2pE2`

1`

dq
b̂1~q!

X1 iq

1
1

2pE2`

1`

dq
b̂2~q!

X1 iq
. ~B19!

We calculate the two integrals in the right-hand side of E
~B19! by the residue theorem. Asb̂1(q) is analytic and de-
creases at infinity in the upper half-plane, the first integ
can be written as a contour integral around the upper h
plane. The only contribution to the first integral comes, us
Cauchy’s theorem, from the poleq5 iX. One can also check
that the second integral vanishes@using a contour around th
lower half-plane and the fact thatb̂2(q) has no pole#. There-
fore, Eq.~B19! gives

E
0

1`

du e2uXb~u!5b̂1~ iX !. ~B20!

Now, if we multiply Eq.~B3! by exp(iqu) and if we inte-
grate overu, we easily get for any realq

b̂1~q!1b̂2~q!5Ĥ~q!1eĤ~q!b̂1~q!. ~B21!

This relation betweenĤ(q), b̂2(q), and b̂1(q), together
with Eq. ~B11!, gives

b* ~u!5
1

2peE2`

1`

dq e2 iqu$ ln@11eb̂1~q!#

2 ln@12eb̂2~q!#%. ~B22!

Using again that, in the upper half-plane,b̂1(u) is analytic
and vanishes at infinity, we see that, for asmall enoughe,
the quantity ln@11eb̂1(q)# is also analytic and decreases to
at infinity when Imq>0. Similarly, ln@12eb̂2(q)# has the
.

l
lf-
g

same properties for Imq<0. This allows us to calculate th
left-hand side of Eq.~B13! as we did for the right-hand side
We find

E
0

1`

du e2uXb* ~u!5
1

e
ln@11eb̂1~ iX !#. ~B23!

Comparing Eqs.~B20! and ~B23! completes the proof of
Eq. ~B13!.

We can now give an expression of the energy. If we u
the definition~B2! of H(u) in Eqs.~B11! and~B12!, we find

b* ~u!5
1

2Ap
(
k50

1`
ek

~k11!3/2
e2u2/@4~k11)#. ~B24!

This gives

b* ~0!5
1

2Ap
(
k50

1`
ek

~k11!3/2
, ~B25!

b* 9~0!52
1

4Ap
(
k50

1`
ek

~k11!5/2
, ~B26!

and, together with Eq.~B15!, these equations allow us t
give an expression ofb(0) andb9(0).

From Eqs.~27!, ~64!, and~65!, we see that

eb~0!5nAc. ~B27!

Then, using Eq.~B15!, we get

eb* ~0!5nAc, ~B28!

b9~0!

b~0!
5

e

nAc
b* 9~0!1

n2c

6
.

The energy is given by Eq.~67!. We get

E~n,L,g!5
2

L2 Fnc2

12
2eAcb* 9~0!G . ~B29!

And, finally, using relations~B25! and~B26!, we obtain Eqs.
~68! and ~69!.

APPENDIX C: HERMITE POLYNOMIALS
WITH A NONINTEGER NUMBER OF ROOTS

What we try to do in this whole paper is essentially
calculate(aqa

2 ~the energy! where$qa% is a solution of Eq.
~17!, in such a way thatn appears as a continuous paramet
This allows us to obtain expressions of the energy for n
integern.

One can use the same procedure in other kinds of si
tions. A simple example which illustrates our calculations
the case of the zeros of Hermite polynomials.

The nth Hermite polynomialHn(X) is the solution poly-
nomial in X with leading coefficient 1 of the differentia
equation@33#
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1

2
Hn9~X!2XHn8~X!1nHn~X!50. ~C1!

The polynomialHn(x) is of degreen and has the symmetr
Hn(X)5(2)nHn(2X). For example, we haveH4(X)5X4

23X21 3
4 . The n roots $ha% (1<a<n) of H(X) are real

and distinct@34#.
By deriving Eq.~C1! p times with respect toX, we see

that, for allp,

XHn
(p11)~X!5

1

2
Hn

(p12)~X!1~n2p!Hn
(p)~X!. ~C2!

This shows that the (n2p)th Hermite polynomial is, up to a
constant factor, equal to thepth derivative ofHn(X). ~This
property will be used a lot in Appendix D.!

Equation~C1! can be used directly to calculate the fir
coefficients ofHn(X),

Hn~X!5Xn2
1

2S n
2DXn221

3

4S n
4DXn241•••. ~C3!

Using Eq. ~C3!, the symmetry ofH(X), and the largeX
expansion,

Hn8~X!

Hn~X!
5 (

p>0

1

Xp11 S (
a

ha
p D , ~C4!

we can calculate the moments of the roots$ha% of H(X):

(
a

ha
25

n~n21!

2
, ~C5!

(
a

ha
45

n~n21!

4
~2n23!, ~C6!

and so on. These moments area priori defined only for in-
tegern but as the expressions are polynomial inn, one can
obviously extend their definition to nonintegern @similarly to
what we do in the small-c expansion ofB(u) in Sec.~III B !#.

To generate all the moments of the rootsha , it is conve-
nient to consider the generating function

Q~u!5(
ha

ehau, ~C7!

which is quite reminiscent of the quantityb(u) defined in
our quantum problem.@Using Eqs.~24! and ~64!, we can
check thatb(u)}exp(uAc/2)(r(qa)exp(qau/Ac).#

The functionQ(u) is hard to calculate for generaln but
we can expand it in powers ofn. This can be done by con
sidering

C~X!5
Hn8~X!

Hn~X!
5E

0

1`

du Q~u!e2uX, ~C8!

which is defined only forX positive and large enough t
make the integral converge. This functionC(X) is solution
of a differential equation which follows from Eq.~C1!:
1

2
C8~X!1

1

2
C~X!22XC~X!1n50. ~C9!

To obtain an expansion in powers ofn, we write

C~X!5nC1~X!1n2C2~X!1•••. ~C10!

ThusC1(X) satisfies

1

2
C18~X!2XC1~X!1150. ~C11!

This differential equation can easily be solved, and the in
gration constant can be fixed using the requirement~C8! that,
for largeX, C(X).n/X,

C1~X!5E
0

1`

du e2uX2(u2/4). ~C12!

Then ordern2 of Eq. ~C9! gives

1

2
C28~X!2XC2~X!1

1

2
C1~X!250, ~C13!

the solution of which can be written as

C2~X!52E
0

1`

du e2uX2u2/4E
0

1`

dt

cosh
ut

A2
21

t
e2t2.

~C14!

The procedure can be iterated to any order inn ~of course
expressions become more and more complicated!. Using Eq.
~C8! and the expressions ofC1(X) andC2(X), we can give
an expression ofQ(u):

Q~u!5ne2u2/412n2e2u2/4E
0

1`

dt

cosh
ut

A2
21

t

3e2t21O~n3!. ~C15!

Expanding this expression in powers ofu, one calculates
from this expression and from Eq.~C7! the terms linear and
quadratic inn of all the moments of theha . @The results
agree for the second and the fourth moments with Eqs.~C5!
and ~C6!.#

We noticed that for smalln, the expression~C15! corre-
sponds ton roots ha distributed along the imaginary axi
with a Gaussian distribution. We do not know whether this
general and whether there exists, for general nonintegern, a
distribution of the rootsha in the complex plane which give
all moments calculated as in Eqs.~C5! and ~C6!.

It is interesting to notice the similarity betweenQ(u) and
b(u) defined in Sec. IV.

APPENDIX D: THE EXPANSION IN POWERS
OF c USING HERMITE POLYNOMIALS

In this appendix we show how to expand the soluti
$qa% of Eq. ~17! in powers ofc for integern. One can see
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from Eq.~17! that the rootsqa scale for smallc like Ac. It is
thus convenient to rescale the polynomialP(X) defined in
Eq. ~19! and theqa in the following way:

qa5r aAc,
~D1!

P~XAc!5cn/2R~X!.

@$r a% are thus the roots ofR(X).# With these new variables
Eq. ~20! becomes

er aAcR~r a2Ac!1e2r aAcR~r a1Ac!50. ~D2!

As the rootsr a of R(X) are all distinct, this equation is
obviously equivalent to

eXAcR~X2Ac!1e2XAcR~X1Ac!

52@coshXAc1 f ~X!#R~X!, ~D3!

where f (X) is analytic @this follows from the fact that as
R(X) is polynomial, f (X) defined by Eq.~D3! is obviously
meromorphic; moreover, as the left-hand side of Eq.~D3!
vanishes at all the roots ofR(X), f (X) has no pole#. We are
now going to solve Eq.~D3! as a power series inc @i.e., find
both f (X) andR(X) as power series inc].

1. Expansion of the polynomialR„X…

We only have the single equation~D3! to obtain two
quantities@R(X) and f (X)]; however, using the fact tha
f (X) has no pole andR(X) is a polynomial, both quantities
can be determined in a small-c expansion. Let us write

R~X!5R0~X!1cR1~X!1c2R2~X!1•••,
~D4!

f ~X!5c f1~X!1c2f 2~X!1•••,

where thef i(X) have no pole,R0(X) is a polynomial of
degreen @the term of highest degree inR0(X) is Xn], and all
the Ri(X) ~for i>1) are polynomials of degree less thann.
At first order inc, we find that Eq.~D3! gives

1

2
R092XR085 f 1R0 . ~D5!

As f 1(X) has no pole, it must be a polynomial. Becau
R0(X) is of degreen, we see by looking at both sides of E
~D5! that, necessarily,f 1(X)52n. We recognize then the
differential equation~C1! that defines Hermite polynomials
Therefore,

f 1~X!52n,
~D6!

R0~X!5H~X!.

We recover that way that ther a are the zeros of thenth
Hermite polynomial whenc is very small@24#.

At next order inc, Eq. ~D3! gives
1

2
R192XR181nR12 f 2H

5
X3

6
H82

X2

4
H91

X

6
H (3)2

1

24
H (4). ~D7!

As R1 andH are polynomials, Eq.~D7! tells us thatf 2H is a
polynomial, too. We also know thatf 2(X) has no pole, thus
it must be a polynomial.R1(X) is of degree strictly less than
n, so the expressionR19/22XR11nR1 is of degree strictly
less thann. As H is of degreen, we recognize in Eq.~D7! a
Euclidian division of polynomials:2 f 2(X) is the quotient of
the right-hand side of Eq.~D7! divided by H(X), and the
terms involvingR1(X) form the remainder of this division
This ensures that there is only one possible functionf 2(X)
which verifies Eq.~D7!.

In practice, to perform this Euclidian division we can u
the property~C2! of the Hermite polynomials as many time
as needed in the right-hand side of Eq.~D7!: for instance, we
transform the termX3H8/6 into nX2H/61X2H9/12. We can-
not changeX2H anymore, but we can apply Eq.~C2! to the
termX2H9. When no more transformation is possible, we a
left with

X3

6
H82

X2

4
H91

X

6
H (3)2

1

24
H (4)

5S n

6
X22

n~n21!

6 DH2
1

12
H9. ~D8!

The Euclidian division is then easy to perform,

f 2~X!52
n

6
X21

n~n21!

6
,

~D9!
1

2
R192XR181nR152

1

12
H9.

Using again Eq.~C2!, the differential equation onR1 can be
solved; we find

R1~X!52
1

24
H9~X!. ~D10!

As R1(X) is simply a derivative ofH(X), and asf 1(X) is a
known polynomial ofX, we see that at the next order inc we
will have to solve an equation of the form

1

2
R292XR21nR22 f 3H5( XjH (k). ~D11!

Using many times Eq.~C2!, the right-hand side can be writ
ten in a ‘‘canonical form’’:

( XjH (k)5( XjH1( H (k), ~D12!

which allows us to writef 3 as a polynomial inX andR2 as a
sum of derivatives ofH(X). It is easy to see recursively tha
at any orderck in the expansion we can repeat this proced
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to calculatef k(X) andRk21(X). As a result we see thatf k is
a polynomial inX and thatRk21 can be written as a sum o
derivatives ofH(X).

It is worth noting that at each order the variablen comes
from the previous orders and from transformations of
kind XH8(X)→ 1

2 H9(X)1nH(X). Because those are th
only two mechanisms by whichn appears, it is easy to se
that at each order the coefficients of the sum of derivative
H(X) that constitutesRk21(X) are allpolynomials in n.

A computer can easily do this tedious but straightforwa
task to any desired order. Up toc3, we find

R5H2
c

24
H92c2S n

360
H92

7

5760
H (4)D

1c3F S n

2520
2

n2

3024DH91
11n

60 480
H (4)2

31

967 680
H (6)G

1O~c4!. ~D13!

2. Expansion of the rootsr a of R„X…

As seen in Eq.~D13!, the polynomialR(X) is to leading
order inc given byH(X). It is thus natural to write the root
r a of R(X) as

r a5ha1cxa1O~c2!. ~D14!

($ha% are the roots ofH.! Inserting Eq.~D14! into Eq.~D13!,
we find, at first order inc,
e

of

d

xaH8~ha!2
1

24
H9~ha!50. ~D15!

Using the definition~C1! of Hermite polynomials, we have
H9(ha)52haH8(ha). This gives in turnxa5 1

12 ha . Repeat-
ing this procedure to any order inc, we generate terms of th
form ha

j H (k)(ha) which can be reduced to terms of the for
ha

l H8(ha) by using Eq.~C2! as many times as necessary.
is then possible to divide the expression byH8(ha) and we
are left with an equation giving each new term in the exp
sion of r a as apolynomial in ha. Again, this can be pro-
grammed, and we get, up to the orderc2,

r a5
qa

Ac
5ha1

c

12
ha1c2F S n

120
2

11

1440Dha2
1

360
ha

3 G
1O~c3!. ~D16!

Using Eqs.~D1! and ~16!, this leads to

2

L2 E~n,L,g!52c( ha
22

c2

6 ( ha
2

2
c3

360S ~6n23!( ha
222( ha

4 D1O~c4!,

~D17!

which coincides with Eq.~38! when one uses the propertie
~C5! and ~C6! of the rootsha of the Hermite polynomials.
-
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